De uitvinding heeft betrekking op een gestel omvattende een stationair gesteldel en ten minste een daarmee gekoppeld beweegbaar gesteldel waarbij voorzien is in ten minste een compensatiemassa en een compensatierotatieorgaan voor het tegengaan van reactiekrachten en momenten op het stationaire gesteldel bij bewegingsvariatie van het beweegbare gesteldel, waarbij de compensatiemassa is verenigd met het compensatierotatieorgaan.
Gestel

De uitvinding heeft betrekking op een gestel omvattende een stationair gesteldeel en ten minste een daarmee gekoppeld beweegbaar gesteldeel waarbij voorzien is in ten minste een compensatiemassa en een compensatiertatieorgaan voor het tegengaan van reactiekrachten en momenten op het stationaire gesteldeel bij bewegingsvariatie van het beweegbare gesteldeel.

In het algemeen geven bewegende gesteldelen krachten en momenten af op het stationaire gesteldeel (de vaste wereld). Deze zogenaamde (dynamische) reactiekrachten en -momenten zijn vaak ongewenst omdat ze trillingen veroorzaken die geluid, slijtage en ongemak tot gevolg hebben, tot verminderde positioneringsnauwkeurigheid leiden, of tot verstoring van een delicaat evenwicht aanleiding geven. In het bijzonder in situaties waar geen vaste wereld aanwezig is waarop het stationair gesteldeel kan afsteunen, zoals in de ruimte, veroorzaken de reactiekrachten en -momenten van bijvoorbeeld een robotarm uit fysische noodzaak veranderingen in de stand van het ruimteschip, wat onacceptabel is in verband met wetenschappelijke experimenten en het richten van antennes en zonnepanelen.

Dynamische balancering van een beweegbaar gesteldeel zorgt ervoor dat alle reactiekrachten en -momenten gecompenseerd worden. Dynamisch gebalanceerde gesteldelen induceren ook geen trillingen in de omgeving, en kunnen worden uitgevoerd zonder trillingsisolatiesystemen.

Ten behoeve van het dynamisch balanceren dienen er elementen (compensatiemassa en compensatiertatieorgaan) aan het beweegbare gesteldeel te worden toegevoegd, en meer naar-mate het mechanisme meer vrijheidsgraden bezit. Het toevoegen van deze compensatie-elementen veroorzaakt een toename van de massa en van de traagheid van het mechanisme. Een vergrote massa is met name in verband met het lanceren naar de ruimte bezwaarlijk, een vergrote traagheid zorgt ervoor dat prestaties afnemen of dat grotere motoren nodig zijn om gelijke prestaties te verwezenlijken.
Om hoge lanceerkosten te vermijden dient de voor de dynamische balancering benodigde toe te voegen massa in de vorm van de compensatiemassa en het compensatierotatieorgaan en de bijbehorende overbrengingsmechanismen zo gering moge-
lijk te zijn.

Ook in aardse toepassingen kan dynamische balance-
ing nuttig zijn. Dynamisch gebalanceerde mechanismen maken trillingsisolatiesystemen overbodig. Aangezien trillingsiso-
latiesystemen trillingen niet volkomen elimineren, kan er be-
hoefte zijn aan inherent trillingsvrije mechanismen. Met name daar waar zeer hoge eisen aan positioneringsnauwkeurigheid worden gesteld, wordt dynamische balancering toegepast, bij-
voorbeeld in machines voor de fabricage van geïntegreerde elektronische circuits (chips). Trillingen hebben in deze toepassing al snel een amplitude in de orde van de bij deze fabricage gewenste nauwkeurigheid. In deze toepassingen is het belangrijk dat de machine snel kan werken, zodat een ge-
ringe traagheid van het beweegbare gesteldeel van groot be-
lang is.

Verder wordt in handbediende apparaten dynamische balancering toegepast om de door het apparaat geïnduceerde trillingen volkomen te isoleren van de gebruiker, teneinde het comfort te verhogen en letsel op lange termijn te voorko-
men. Een andere mogelijke toepassing bestaat in het ontwerp van instrumenten die een snelle beweging moeten kunnen maken terwijl de positie niet mag veranderen, zoals bijvoorbeeld medische instrumenten voor het nemen van een biopsie.

Een verdere toepassing is aanwezig in systemen die zich in delicaat evenwicht bevinden. Te denken valt aan het ontwerp van armen voor tweebeenige looprobots. Deze robots zijn vaak slechts in beperkte mate stabiel. Bewegingen van de armen kunnen deze looprobots gemakkelijk uit hun evenwicht doen geraken. Dynamische balancering van de armen neemt de invloed van de armbeweging op de gang van de looprobot geheel weg, zodat de armen geen invloed op het lopen hebben.

In de stand van de techniek wordt de dynamische ba-
lancering zo uitgevoerd dat eerst de reactiekrachten worden gecompenseerd door toevoeging van de compensatiemassa waarna
vervolgens de reactiemomenten worden gecompenseerd door toevoeging van een daartoe dienend compensatierotatieorgaan. Op deze wijze is het compenseren van de reactiekrachten ontkoppeld van het compenseren van de reactiemomenten en is een exacte balancering van het beweegbare gesteldeel mogelijk. Nadelig hieraan is niettemin dat zowel de massa als het traagheidsmoment van het gehele gestel relatief hoog is, hetgeen uit oogpunt van energieverbruik en hanteerbaarheid nadelen oplevert.

Een doelstelling van de uitvinding is een gestel te verschaffen waarvan de massa en het traagheidsmoment op een lager niveau kan worden ontworpen onder handhaving van de nuttige aspecten van dynamische balancering.

Het gestel volgens de uitvinding is er daartoe door gekenmerkt dat de compensatiemassa is verenigd met het compensatierotatieorgaan.

De uitvinding vergt dat de compensatiemassa en het compensatierotatieorgaan simultaan worden ontworpen, hetgeen een breuk oplevert met de gangbare ontwerpmethodiek van het dynamische balanceren van een gestel met een stationair gesteldeel en een beweegbaar gesteldeel.

Het gestel volgens de uitvinding bezit het voordeel dat slechts één element nodig is voor de volledige dynamische balancering van het beweegbare gesteldeel. Geschikt is daar- toe het gestel zo uitgevoerd dat de compensatiemassa roteerbaar is gekoppeld met het beweegbare gesteldeel zodanig dat bij rotatie van het beweegbare gesteldeel de compensatiemassa tegengesteld roteert.

De uitvinding berust op het inzicht dat de plaatsing van het compensatierotatieorgaan niet aan enig voorschrift is gekoppeld. Voldoende is dat deze een tegengestelde draairichting bezit ten opzichte van het beweegbare gesteldeel zodat deze de reactiemomenten op het stationaire gesteldeel kan compenseren.

Onder omstandigheden kan voordelig tot een volledige compensatie van zowel reactiekrachten als reactiemomenten worden gekomen door de compensatiemassa te vormen zodanig dat deze een effectief traagheidsmoment bezit dat in hoofdzaak
gelijk is aan het traagheidsmoment van het beweegbare gesteldeel. Onder 'effectief traagheidsmoment' wordt daarbij verstaan het traagheidsmoment van de compensatiemassa zoals dat uitwerkt op het beweegbare gesteldeel, rekening houdend met een eventueel tussengeschakelde (tandwiel)overbrenging.

Zoals uit het voorgaande duidelijk zal zijn, is de uitvinding toepasbaar op tal van terreinen waarin een gestel wordt toepast met een stationair gesteldeel en een beweegbaar gesteldeel. Hiervoor is gerefereerd aan een ruimtetoe passing en aan enkele aardse toepassingen. Uitdrukkelijk wordt opgemerkt dat de genoemde toepassingen niet de enige mogelijke toepassingen vormen, maar dat dit slechts voorbeelden zijn waarin de uitvinding met het beoogde effect nuttig toepassing kan vinden.

Aangezien de uitvinding een breed toepassingsterrein bezit, zal deze in het navolgende verder worden toegelicht aan de hand van een de conclusies niet beperkend uitvoerings voorbeeld dat betrekking heeft op de dynamische balancering van een roterende staaf.

Het uitvoeringsvoorbeeld wordt toegelicht aan de hand van een tekening. In de tekening tonen:
- figuur 1a t/m 1c de wijze van het dynamisch balanceren van een roterende staaf volgens de stand van de techniek; en
- figuur 2a en 2b een dynamisch gebalanceerde roterende staaf volgens de uitvinding.

In de figuren gebruikte gelijke verwijzingscijfers verwijzen naar dezelfde onderdelen.

Figuur 1a toont een als staaf 1 gevormd beweegbaar gesteldeel dat is gemonteerd op een stationair gesteldeel 2. De koppeling van het beweegbare gesteldeel 1 met het stationaire gesteldeel 2 geschiedt met een scharnier 3.

Figuur 1b toont dat voor het compenseren van reactiekrachten op het stationaire gesteldeel 2 ten eerste een compensatiemassa 4 met de staaf 1 kan worden gekoppeld dat eenzelfde bewegingspatroon ondergaat als de staaf 1, en dat bij verplaatsing van het gestel 1,2 de daarbij optredende reactiekrachten op het stationaire gesteldeel 2 volledig kan
compenseren.

In figuur 1c is getoond dat ter completering van de dynamische balancering van het gestel 1,2 een compensatiesto- ratieorgaan 5 wordt toegepast, bijvoorbeeld een schijf die een vooraf bepaald traagheidsmoment bezit en die door middel van een tandwieloverbrenging 6,7 is gekoppeld met de staaf 1 zodanig dat de schijf 5 en de staaf 1 immer in tegengestelde richting draaien. Bij een juiste keuze van het traagheidsmo- ment van de staaf en de overbrengingsverhouding van de tand- wielen 6,7 kan zodoende het reactiemoment van de roterende staaf 1 op het stationaire gesteldeel 2 volledig worden ge- compenseerd.

In de figuren 2a en 2b is de staaf 1 welke roteer- baar om een scharnier 3 op het stationaire gesteldeel 2 is aangebracht wederom getoond, terwijl deze dynamisch gebalanced is onder toepassing van de uitvinding. Hiertoe is een compensatiemassa draaibaar met de staaf 1 gekoppeld waarbij voorzien is in een overbrenging tussen de staaf 1 en de massa 4 om deze massa 4 in rotatie te kunnen brengen in afhanke- lijkheid van rotatie van de staaf 1.

Figuur 2a toont dat voor de roteerbare opstelling van de massa 4 deze massa 4 met drie tandwielen 6, 7 en 8 met de staaf 1 is gekoppeld zodanig dat rotatie van de staaf 1 een overeenkomstige, maar tegengestelde rotatie van de comp- pensatiemassa 4 oplevert.

In figuur 2b is getoond dat hetzelfde effect van een tegengesteld aan de staaf 1 roteren van de compensatiemassa 4 kan worden verkregen door toepassing van een planetair tand- wielstelsel 9, 10 waarbij een inwendig verstand wiel vast ge- monteerd is op het stationaire gesteldeel 2. Langs deze in- wendige verandering van het wiel 9 loopt een tandwiel 10 op de as waarvan de roteerbare massa 4 is gemonteerd. Deze con- structie levert eveneens op dat bij rotatie van de staaf 1 een tegengestelde rotatie van de compensatiemassa 4 wordt verschaf.

De uitvinding levert het voordeel dat de compensa- tiemassa 4 door haar roteerbare opstelling zowel compensatie van reactiekraghten als reactiemomenten kan opleveren waar-
door bespaard kan worden op de massa en het traagheidsmoment van het gehele gestel 1,2.

In het getoonde uitvoeringsvoorbeeld betreft het een gestel met een enkele vrijheidsgraad waarbij de besparing ten opzichte van de stand van de techniek in massa circa 40% en in traagheid circa 10% bedraagt. De uitvinding is uiteraard evenzeer toepasbaar bij compensatie in meerdere vrijheidsgraden. De daarbij bereikbare besparing in massa en traagheid ligt op ten minste hetzelfde niveau. Verdere voordelen van de uitvinding liggen in de beperking van het aantal te gebruiken onderdelen van het gestel waardoor een verminderde storingsgevoeligheid wordt bereikt. Tevens kan het gestel 1,2 volgens de uitvinding met een lager energieverbruik in beweging worden gebracht.
CONCLUSIES

1. Gestel omvattende een stationair gesteldeel en ten minste een daarmee gekoppeld beweegbaar gesteldeel waarbij voorzien is in ten minste een compensatiemassa en een compensatierotatieorgaan voor het tegengaan van reactiekrachten en momenten op het stationaire gesteldeel bij bewegingsvariatie van het beweegbare gesteldeel, met het kenmerk, dat de compensatiemassa is verenigd met het compensatierotatieorgaan.

2. Gestel volgens conclusie 1, met het kenmerk, dat de compensatiemassa roteerbaar is gekoppeld met het beweegbare gesteldeel zodanig dat bij rotatie van het beweegbare gesteldeel de compensatiemassa tegengesteld roteert.

3. Gestel volgens conclusie 1 of 2, met het kenmerk, dat de compensatiemassa is gevormd zodanig dat deze een effectief traagheidsmoment bezit dat in hoofdzaak gelijk is aan het traagheidsmoment van het beweegbare gesteldeel.
**SAMENWERKINGSVERDRAG (PCT) **
RAPPORT BETREFFENDE NIEUWHEIDSONDERZOEK VAN INTERNATIONAAL TYPE

<table>
<thead>
<tr>
<th>IDENTIFICATIE VAN DE NATIONALE AANVRAGE</th>
<th>KENMERK VAN DE AANVRAGER OF VAN DE GEMACHTIGDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nederlands aanvraag nr.</td>
<td>NL 46390-VB/ii</td>
</tr>
<tr>
<td>1027102</td>
<td>Indieningsdatum</td>
</tr>
<tr>
<td></td>
<td>24 september 2004</td>
</tr>
<tr>
<td></td>
<td>Ingeroepen voorrangdatum</td>
</tr>
</tbody>
</table>

Aanvrager (Naam):
Technische Universiteit Delft

Datum van het verzoek voor een onderzoek van internationaal type: SN 43780 NL
Door de Instantie voor Internationaal Onderzoek (ISA) aan het verzoek voor een onderzoek van internationaal type toegekend nr.

I. CLASSIFICATIE VAN HET ONDERWERP (bij toepassing van verschillende classificaties, alle classificatiesymbolen opgeven)

Volgens de internationale classificatie (IPC):

Int. Cl 7: F16F15/22 F16F15/28

II. ONDERZOCHTE GEBIEDEN VAN DE TECHNIEK

Onderzochte minimum documentatie

<table>
<thead>
<tr>
<th>Classificatiesysteem</th>
<th>Classificatiesymbolen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int. Cl 7:</td>
<td>F16F</td>
</tr>
</tbody>
</table>

Onderzochte andere documentatie dan de minimum documentatie, voor zover dergelijke documenten in de onderzochte gebieden zijn opgenomen

III. □ GEEN ONDERZOEK MOGELIJK VOOR BEPAALDE CONCLUSIES (opmerkingen op aanvullingsblad)

IV. □ GEBREK AAN EENHEID VAN UITVINDING (opmerkingen op aanvullingsblad)
VERSLAG VAN HET NIEUWHEIDSONDERZOEK VAN
INTERNATIONAAL TYPE

Nummer van het verzoek om een nieuwheidsonderzoek
NL 1027102

A. CLASSIFICATIE VAN HET ONDERWERP
IPC 7 F16F15/22 F16F15/28

Volgens de Internationale Classificatie van octrooien (IPC) of zowel volgens de nationale classificatie als volgens de IPC.

B. ONDERZOEK GEBIEDEN VAN DE TECHNIEK

Onderzochte minimum documentatie (classificatie gevolgd door classificatiesymbolen)
IPC 7 F16F

Onderzochte andere documentatie dan de minimum documentatie, voor dergelijke documenten, voor zover dergelijke documenten in de onderzochte gebieden zijn opgenomen

Tijdens het internationaal nieuwheidsonderzoek geraadpleegde elektronische gegevensbestanden (naam van de gegevensbestanden en, waar uitvoerig, gebruikte trefwoorden)
EPO-Internal

C. VAN BELANG GEACHTEN DOCUMENTEN

Categorie* Geciteerde documenten, eventueel met aanduiding van speciaal van belang zijnde passages Van belang voor conclusie nr.
X FR 2 817 008 A (ASS DE PROMOTION DE L I DE PRO) 24 mei 2002 (2002-05-24) bladzijde 4, regel 10 - regel 23; figuur 1

X DE 41 38 476 C (MCK MASCHINENBAU) 18 februari 1993 (1993-02-18) samenvatting; figuren

X EP 0 303 799 A (ESCHER WYSS GMBH) 22 februari 1989 (1989-02-22) samenvatting; figuur 1

X DE 14 73 693 A (BETHKE KARL HEINZ) 6 november 1969 (1969-11-06) het gehele document

Datum waarop het nieuwheidsonderzoek van internationaal type werd voltooid
29 December 2004

Naam en adres van de instantie
European Patent Office, P.B. 5816 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 940-2040, Tx. 31 651 epo nl, Fax (+31-70) 940-3016

Verzenddatum van het rapport van het nieuwheidsonderzoek van internationaal type

De bevoegde ambtenaar
Pemberton, P

* Leden van dezelfde octrooifamilie zijn vermeld in een bijlage

** Speciale categorieën van aangehaalde documenten
* document dat de algemene stand van de techniek weergeeft, maar niet beschouwd wordt als zijnde van bijzonder belang
"E" eerder document, maar gepubliceerd op de datum van indiening of daarna
"L" document dat het basis- of onderwerp van een tijdelijke voorrang maakt of dat aangehaald wordt om de publicatiedatum van een andere aanhaling vast te stellen of om een andere reden zoals aangegeven
"O" document dat betrekking heeft op een mondelinge uiteenzetting, een gebruik, een tentoongesteld of een ander middel
"P" document gepubliceerd voor de datum van indiening maar na de ingegeven datum van voorrang

** later document, gepubliceerd na de datum van indiening of datum van voorrang en niet in strijd met de aanvraag, maar aangehaald ter verduidelijking van het principe of de theorie die aan de uitvoering ten grondslag ligt
"X" document van bijzonder belang; de uitvoering waarvoor uitsluitende rechten worden aangevraagd kan niet als nieuw worden beschouwd of kan niet worden beschouwd als inventief wanneer het document beschouwd wordt in combinatie met één of meerdere soortgelijke documenten, en deze combinatie voor een deskundige voor de hand ligt
"X" document dat deel uitmaakt van dezelfde octrooifamilie

* Verzendlengte van het rapport van het nieuwheidsonderzoek van internationaal type

* In de tabel zijn alleen de documenten van belang vermeld die voor de beslissing in strijd zijn met de aanvraag, tenzij anders vermeld.
<table>
<thead>
<tr>
<th>Categorie</th>
<th>Gescriceerde documenten, eventueel met aanduiding van speciaal van belang zijnde passages</th>
<th>Van belang voor conclude nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE 197 26 461 C (MANNESMANN SACHS AG) 23 juli 1998 (1998-07-23) kolom 7, alinea 1; figuren 6,8</td>
<td>1-3</td>
</tr>
<tr>
<td>A</td>
<td>WO 96/06290 A (MADSEN JOHN GRAM ; SMIDTH & CO AS F L (DK)) 29 februari 1996 (1996-02-29)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 3 125 888 A (S.FOX ET AL) 24 maart 1964 (1964-03-24)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>FR 321 466 A (BENCE) 10 januari 1903 (1903-01-10)</td>
<td></td>
</tr>
<tr>
<td>In het rapport genoemd octrooigeschrift</td>
<td>Datum van publicatie</td>
<td>Overeenkomende geschrijven</td>
</tr>
<tr>
<td>--</td>
<td>----------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>DE 4138476</td>
<td>18-02-1993</td>
<td>DE 4138476 C1</td>
</tr>
<tr>
<td>EP 0303799</td>
<td>22-02-1989</td>
<td>DE 3727742 C1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 68861 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0303799 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2764958 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6398655 B1</td>
</tr>
<tr>
<td>WO 9606290</td>
<td>29-02-1996</td>
<td>AU 3341395 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1156498 A, B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69502200 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69502200 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9606290 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 776431 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2115394 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 10504633 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SI 776431 T1</td>
</tr>
<tr>
<td>US 3125888</td>
<td>24-03-1964</td>
<td>GEEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 03072436 A1</td>
</tr>
<tr>
<td>FR 321466</td>
<td>GEEN</td>
<td></td>
</tr>
</tbody>
</table>

Formulier PCT/ISA/201 (vervolgblad octrooifamilie) (Juli 2004)