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WORKSHOP ON FUNDAMENTAL ISSUES & FUTURE RESEARCH 
DIRECTIONS FOR PARALLEL MECHANISMS & MANIPULATORS 

 

PREFACE 
 
This workshop is bringing together experts in the area of parallel manipulators from around the 
globe for two days in order to disseminate recent research progress and to identify the most 
promising future research directions for parallel manipulators.  This meeting is not a routine 
conference, wherein the primary responsibility of the participant is to present his or her paper.  
Instead, the purpose of this workshop is to create significant opportunity for dialog between 
the participants.   
 
Therefore the workshop contains not only focused keynote presentations, an industrial panel, an 
educational panel and a poster session on white papers, but also focused paper sessions of a 
fairly unusual format: Each presenter serves not only as a speaker, but also as a panelist.  
Specifically, 20 minutes are reserved for each speaker, but they are used as follows: 
 

1. Each regular paper session starts with 10-minute presentations by all speakers back-to-back, with 
only 1-2 minutes in between for immediate questions. 

 
2. The remaining time is used for a panel discussion in which all speakers of the session serve on the 

panel. The discussions are moderated by the session chairs. 
 

Furthermore, workshop secretaries will take notes throughout the workshop to keep track of the 
discussions.  They will report at the workshop summary on Friday afternoon.  (We will try to 
make written summaries of the discussions available after the workshop at 
http://robot.me.gatech.edu/WORKSHOP/workshop.html .) 
 
The paper submission process was open to anybody interested in parallel manipulators.  41 
regular papers were received, and, after a rigorous peer-review process, 29 were accepted.  In 
addition, 10 non-refereed white papers were submitted and are included in the proceedings. 
 
By trying a new (and untested) format for the regular paper sessions of this workshop we are of 
course taking a certain risk. We hope that when you leave this workshop you will find that this 
format was beneficial to your experience and that it created an entirely different atmosphere that 
encouraged open discussion and the exchange of ideas.  We will certainly appreciate your 
feedback on how you think this format worked out and incorporate any suggestions you may 
have in future events. 
 
Last but not least, we hope that you do enjoy your stay in beautiful Québec City. 
 
With best regards, 
 
Imme Ebert-Uphoff 
Clément M. Gosselin  
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2:25PM – Regular Papers:  Design and Optimization 
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1. A.S. Sorensen, H.G. Petersen, O.G. Jakobsen, J. Steinicke 
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Robotic Manipulator”. 

 
2. J. Yoon, J. Ryu 
 “Reconfigurability of a Parallel Manipulator: A Case Study”. 
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Performances”. 

 
4. G.F. Liu, Z.X. Li 
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Abstract:
Although it is has been largely demonstrated in specific

applications that parallel manipulators offer very good perfor-
mances there are still domains (e.g. the machine-tool industry)
in which this type of structure is not yet completely accepted.
This may be explained by two main reasons:

• at the end-user level the intrinsic non-linearity of these
structures is still not well understood and previous works
on the subject has been overlooked. This has led to the de-
velopment of prototypes whose performances where not the
expected one, which in turn has led to negative opinions
among some communities

• at the academic level they are still many open problems,
even at the most basic levels. A direct consequence is that
there is still no simulation tool that allow to design effi-
ciently parallel structures whatever is their topology, while
this is a key issue as the performances of these structures
are highly dependent on the topology and dimensioning of
the mechanism.

We will review what are the main problems that are still to be
solved in the field of kinematics for parallel mechanisms, focus-
ing especially on the optimal design problem, and try to outline
possible approaches to solve this problem, the purpose being to
clearly separate what part of the problem is architecture depen-
dent from what may be dealt with by generic tools.

Finally we will present theParallel Structure Initiative
PSI proposed by the Computational Kinematics Committee of
IFToMM that intend to initiate a collaborative work between
academics, companies and end-users to solve the kinematics
problems for parallel structures.

1 Introduction

Historically, closed-chain structures have attracted the interest
mostly of mathematicians as they offer interesting problems.

Some theoretical problems linked to this type of structure were
mentioned as early as 1645 by Christopher Wren, then in 1813
by Cauchy (Cauchy 13) and in 1867 by Lebesgue (Lebesgue 67).
One of the main theoretical problems in this field, called the
spherical motion problem, related to what is now called singu-
larity analysis, was the central point of a competition calledLe
Prix Vaillant, that took place in France in the 1900’s and was or-
ganized by the Acad́emie des Sciences. The prize was won on
equal terms by Borel (Borel 08) and Bricard (Bricard 06).

But clearly at this time the technology was not able to deal
with any practical applications of this type of structure. Al-
though the very first application was proposed by Gough for
a tire test machine (Gough 57; Gough Whitehall 62) parallel
structure were really put in practice in the 70’s for flight sim-
ulator (Baret 78; King 73; Koevermans+75; Parrish+73) (a
very specific area where mostly acceleration are of interest) and
in the early 80’s for robotics application (McCallion Pham 79;
Reboulet Robert 85) (with an interest in a larger panel of perfor-
mances).

Starting in the 90’s parallel kinematic structure (PKS) have
started either to be put in use in various domains such as fine
positioning devices or to be considered for potential applications
such as machine-tool. Among these applications, some of them
were not as successful as expected. The clearest illustration of
this fact is the use of PKS in the machine-tool industry. Al-
though the first presentation of such PKS dates from 1994 with
the Variax of Giddings, we have still to see PKS in current use
for such application.

I see three main reasons for this failure in this particular do-
main:

1. with very few exceptions there is no interaction with the
laboratories having worked in this field for many years and
the developers in the industry; hence problems that were
familiar for researchers are completely overlooked by the
developers, while researchers may miss important points for
a specific application.
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2. the inherent non-linearity of PKS and its consequences on
the design and on the control of such structure is highly un-
familiar to people working in the field of machine-tool, ac-
customed to a linear world,

3. developers in the industry focus first on the development of
the basic mechanical elements of a PKS, such as ball-and-
socket joints. Although this work was necessary as these
components in the right size were not commercially avail-
able, this type of development is onlylocal, missing the
point that these elements are part of aglobal systemthat has
to be considered as such.

I must also be noted that these failures have a negative influence
on the development of PKS, as they comfort a trend that states
that these structures are too complex to work in practice (a trend
that completely ignore past success stories in this field).

On a larger level I intend to show thatclaiming that a PKS
offers better performances than more usual structures iswrong
. . . except if the PKS is the result of an optimal design methodol-
ogy

To support this claim I will try to emphasize the difficulties
with which we are confronted to build efficient PKS and outline
a possible approach to solve these difficulties.

2 Topology synthesis

Although I will focus on the dimensional synthesis problem, it
is easy to show that the topology synthesis problem, i.e. finding
the most appropriate mechanical architecture for a given task, is
difficult for PKS.

Assume for a simplicity that for a given task we have to de-
sign a mechanism with 6 d.o.f. and that the comparison between
different mechanical architectures has to be done based only on
the volume of the workspace that can be reached by the end-
effector. A further assumption is that actuated joints will only be
of the prismatic (P) or revolute (R) type.

For classical serial structure, only the first three joints have
an influence on the location of the end-effector. All the possible
architectures will be obtained by considering all the possible set
of three elements, each element being either P or R. For example
a Cartesian robot is defined as the set PPP, while the spherical
robot is RRR. Now affect a standard lengthL to each element of
the robot: each link of the robots will have lengthL, prismatic
joint have a retracted length ofL and an extended length of2L
etc...

Under that assumption the workspace volume of a PPP robot
is L3 while the RRR workspace volume is roughly85L3, for any
value ofL. Hence as far has workspace is concerned it is clear
that the RRR structure is better than the PPP, whatever is the final
dimensioning.

Now let us introduce two different PKS,
namely a classical Gough platform and an Hexa
robot (Pierrot Dauchez Fournier 91). A first problem is

that for these type of structure the translation ability is not
decoupled from the orientation. Then according to our hy-
pothesis we will assume that the radii of the base and platform
is identical and equal toL. This is clearly a very restrictive
assumption, which will have a large effect on the workspace
volume. Finally even for a given orientation we do not know
what will be the workspace volume of both PKS as a function of
L. It seems only that for a given geometry of Gough platform
the workspace volume is roughlykρ3 whereρ is the extension
of the leg (Masory Wang 95), wherek is a factor that depend
on the geometry of the robot (hence under our assumption the
workspace volume will be written ask(L)L3). A similar result
has never been established for the Hexa robot but imagine that in
that case the workspace may be written asg(L)L3. Comparison
of the two PKS in term of workspace volume based on the
previous formula may lead only to the conclusion that for some
ranges onL the Gough platform has a larger workspace than the
Hexa, the opposite being true for other ranges forL.

Hence at this time we are only able to compare the generic
workspace volume of 2 serial structures but not to compare either
a serial and a parallel structure or 2 PKS.

Hence topology synthesis for PKS is a much more com-
plex problem than for serial structure and cannot be disconnected
from the dimensional synthesis problem.

There is also an important open problem related both to the
topology and dimensional synthesis of PKS with less than 6 d.o.f.
Having less than 6 d.o.f. may be interesting for some tasks (such
as using a PKS for a milling machine for which the rotation
around the normal of the platform is not necessary) and allows
for a reduction in the cost of the machine. Numerous PKS with
between 3 and 5 d.o.f. have been proposed in the literature. We
may classify them into two different categories:

• externally constrained mechanism: the PKS has less than 6
d.o.f because a passive mechanism restricts the motion of
the platform. A typical example of such type of PKS is the
Tricepts robot.

• geometrically constrained mechanism: the geometry of the
legs imposes constraints on the motions of the platform. A
typical example of such type of PKS is the Delta robot or
the ”Agile Eye”.

In both cases the platform will have less than 6 d.o.f. only in
theory. Indeed due to the manufacturing tolerances, clearance in
the joints,. . . the platform will exhibit motions in all 6 d.o.f. The
problem to be addressed is the following: being given a thresh-
old on the maximal amplitude of the undesired motion what are
the amplitude of the errors that are allowed for the manufactur-
ing of the robot?. Clearly this is a very important issue: if the
amplitude of the errors are lower than reasonable manufactur-
ing tolerances, then the mechanical architecture cannot be used
in practice. This important subject has almost never been ad-
dressed (Parenti-Castelli Di Gregorio 00).
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3 Dimensional synthesis

Finding the dimensions of a given mechanism so that it is opti-
mal with respect to some requirements is a very old problem in
mechanism theory. Before describing the existing methods let us
examine what are the requirements that may be imposed on PKS
and what is their complexity.

3.1 Requirements

The COPRIN project of INRIA has a lot of practical experience
in the optimal design of PKS, which has been gained from the
development of our own prototype and from several industrial
contracts. We have been dealing especially with:

• fine positioning devices for heavy loads (with the European
Synchrotron Radiation Facility, the Institut Laue Langevin,
Alcatel),

• machine-tools (with Constructions Ḿecaniques des Vos-
ges),

• medical robots.

Very early we have established an evaluation form for the design
of Gough platform type PKS that both allows the end-user to
describe his requirements (either as trends or with numerical val-
ues) and enable the designer to get all the necessary information
to perform the design study.

The end-user may provide information and requirements
that may be classified as:

• kinematics: workspace, accuracy, maximal motion of the
passive joints, dexterity,

• statics: load on the platform, stiffness of the robot,

• dynamics: maximal velocity and acceleration of the actua-
tor and of the platform, inertia and center of mass,

• geometrical: overall size of the robot, of the mechanical
components,

• technological: overall information on the actuator, on the
sensors and on the passive joints. Indeed the context of the
application may impose the use of restricted classes of such
components.

Note that most of the time the requirements provided by the end-
user will only be subset of the requirements used by the designer.
For example the end-user may provide only requirements on the
workspace and on the load carrying ability but the designer will
also consider, for example, singularities and maximal passive
joint motions. Among the list of requirements, workspace and
accuracy are almost always provided.

The end-user has also to classify his requirements according
to their importance: this is crucial as in some case we have to
relax some requirements in order to be able to satisfy some other

requirements. Hence we will have to consider firststrict require-
mentsthat cannot be relaxed and then other criterion that can be
relaxed to some extent.

It must also be mentioned that some requirements may in-
volve a fixed value (e.g. the accuracy of the positioning of the
platform for a unit value of the sensor error must not greater than
a given threshold) and will be calledfixed value requirements.
On the other hand, we may havea maxima requirements(e.g.
the positioning error of the platform for a unit value of the sensor
error must be as low as possible).

First of all it must be noticed that for PKS most of these per-
formances arepose dependent. For example, the workspace of
the end-effector is dependent upon its orientation, while the ac-
curacy is dependent both upon the orientation and the location of
the end-effector. This dependency is usually quite complex: for
example the accuracy∆X of the positioning of a Gough plat-
form is related to the accuracy∆ρ of the sensor by:

∆ρ = J−1(X)∆X

The inverse Jacobian matrixJ−1 has a relatively simple analyt-
ical form, but establishing the positioning accuracy of the plat-
form as a function of the sensor accuracy will require the use of
J , which is highly complex.

Most of these requirements are of theworst casetype with
respect to the workspace: as the performances are pose depen-
dent, the limits imposed on the requirements have to be consid-
ered for the whole workspace. For example an accuracy require-
ment∆Xd indicates that the positioning error must not exceed
∆Xd over the whole workspace of the robot.

But the designer may have also to deal with other cases.
Imagine for example that two robots A and B with different ge-
ometries have equivalent worst case accuracy. Clearly this does
not imply that they are equivalent. Indeed, for example, theav-
erage valueof the positioning error over the whole workspace
may be quite different or alternatively we may have to consider
thebest case(when some crucial part of the task requires a high
accuracy).

Determining the the best and worst case accuracy is obtained
by solving a difficult constrained optimization problem. We will
see later on that although difficult the problem is tractable. This
is not the case for determiningexactly(we will explain later on
what is our meaning of the word exactly) the average value of
the positioning error over a given workspace which is a problem
without known solution at this time. Using in the design process
criterion for which best or worst case are difficult to calculate,
however appropriate or pertinent they may be, clearly compli-
cate the process. Another example of such complex criteria is
the family of dexterity indexsuch as the absolute value of the
determinant of the inverse jacobian or thecondition number, i.e.
the ratio of the minimal eigenvalue over the maximal eigenvalue
of the matrixJ−1J−T . The analytical form of such index is in
the best case very difficult to calculate and very often even not
possible (for example the condition number is the ratio of the
roots of a polynomial whose degree is equal to the number of
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d.o.f. of the robot and hence cannot be calculated analytically as
soon as this number exceed 4). The average value of these crite-
rion (often called theglobal conditioning index) is very difficult
to calculate exactly. Furthermore we must mention the lack of
significance of this type of index as soon as the motion of the
platform mixes translation and rotation.

Finally it must be emphasized that all the requirements in the
above list are highly sensitive to the geometry of the robot. Such
sensitivity is the first reason for the failure of some prototype of
PKS which have been designed using a local approach instead
of a global one, the second one being that some properties of
PKS have been overlooked. For example changing the radius of
the platform of a Gough platform by 10% may modify the worst
case stiffness by 700%. Clearly such ratio imply that a robot
with a poor topology but optimally designed will present largely
better performances than a robot with an appropriate topology
but poorly designed. Hencedimensional synthesis is crucial
when designing a PKS.

3.2 Workspace requirements

As mentioned previously, most of the design requirements have
to be verified over the workspace of the robot. This workspace
may be defined in various terms:

1. a workspace defined with respect to a global reference
frame

2. the whole workspace of the robot. For example, for a Gough
platform, this workspace may be defined as the set of poses
that the robot can reach with the leg lengthsρ satisfying
the inequalitiesρmin ≤ ρ ≤ ρmax whereρmin, ρmax are
given constants. A general definition will be all the reach-
able poses such thatn inequality constraintsFi(X, ρ) ≤
0 (i = 1, . . . , n) are satisfied.

3. a workspace, where thez component specification is de-
fined relatively to some unknown quantityzd. For example
thez motion ability may be specified as± 50 mm relatively
to some unknown design parameterzd.

These three different possibilities may co-exist for a given design
problem. For example, the accuracy requirement may be defined
for a workspace of type 1, while singularity analysis has to be
performed in the type 2 workspace. For the type 3 workspace we
have to includezd as a design parameter.

3.3 Design methodology and performance verification

The most well known design methodology is the cost-function
approach (Erdman 93). To each design requirementj is associ-
ated a numerical indexIj that is minimal for the best robot. The
cost functionC is defined as:

C =
∑

wjIj ,

where thewj are weight associated to theIj . In some sense,
the cost function is an indicator of the global behavior of the

mechanism with respect to the requirements. AsC is clearly a
function of the set of design parametersP, a numerical procedure
is used to find the value of the design parameters that minimize
C. This approach has several drawbacks:

• the result is heavily dependent upon the weights that are
used in the cost-function, and there is no automatic way to
find the right weights,

• defining the indexI is not always an easy task, for exam-
ple if we have constraints on the shape of the workspace.
Furthermore, as mentioned earlier, some of these index are
even very difficult to estimate (for example the global con-
ditioning index).

• introducing strict requirements in the minimization is diffi-
cult, and in any case computer intensive,

• as for any optimization problem, it is difficult to guarantee
that the global extremum has been found. Error at this level
put in jeopardy the whole design methodology.

• some of the requirements are antagonistic; for example,
it is well known that dexterity is antagonistic with the
workspace volume (Ma Angeles 91); using both criterion in
a weighted sum does not have any physical meaning

But the main difficulty is that the computation of the index for a
given geometry must be very efficient as the minimization proce-
dure will use these calculations extensively. Unfortunately, veri-
fying that a PKS of given geometry satisfies a single requirement
is usually a very complex task.

3.4 Performance verification

3.4.1 Standard verification form

In my opinion, any optimal design methodology will use a per-
formance verification module that takes as its input a robot ge-
ometry and verify whether this geometry satisfy a list of require-
ments. Hencethe development of an efficient performance
verification module is a key point for the optimal design of
PKS.

Ideally, such module should be able to

1. deal with any type of PKS, although optimized version for
the most usual PKS may exist,

2. deal with almost any type of requirements, especially worst
and best cases,

3. provideguaranteedresults.

A given requirement usually defines an implicit set of constraints
I that is only dependent upon the topology of the robot. Assume
now that we have a generic toolT that is able to deal with any
I as soon asI is expressed in a standard form (that we will call
the standard verification form(SVF)). A generic performance
verification module may reach the first two objectives if
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1. we first preprocess all theI for each requirement to put
them in the standard form, probably using a symbolic com-
putation software,

2. we use then the generic toolT to verify all the requirements
either in sequence or simultaneously.

In my opinion, many mathematical tools offer the possibility of
designingT (see the Annex for one possibility). But the key
point on this issue isa collaborative work of researchers in the
field of mechanism theory and mathematicians. The first part
of this effort is the development of the SVF: the researchers in
mechanism theory will provide the description of all the require-
ments that may be of interest for PKS; the mathematicians will
analyze them to obtain a very reduced set of problems to solve.
For example, although dealing with very different quantities, de-
termining the worst case accuracy of a robot and the maximal
joint forces are strictly equivalent mathematical problems.

The second part of the collaborative work is the design of
the toolT that allow to solve the reduced set of problems.

3.4.2 The meaning ofexact

DesigningT will be clearly a difficult job buta key point on
this issue is the meaning of getting anexactresult. We must
take advantage of the fact that exact means in our community
that the result must beguaranteedand this may strongly be dif-
ferent than the mathematical meaning of the word exact (or even
approximatively exact in the computer science signification of
this term). A guaranteed result means that we are able to de-
termine error bounds on the result, so that a decision based on
this result will be justified. In the worst case the algorithm will
indicate that the result cannot be calculated safely in a standard
manner on a computer (this will usually happen when we are at
the limits on the requirements and neglecting the design results
that may be provided at this point should not cause any prob-
lem as these solutions will have an error margin that will be well
below the manufacturing tolerances). Guaranteed result is there-
fore much less stringent than exact result: hence we must design
our algorithm to use this freedom in view of reducing the com-
putation time. Note also that getting a guaranteed result excludes
the use of discretization methods that just sample the workspace
and verify the requirement only at the sampling points.

In the optimal design process mostly guaranteed results are
needed, as for many requirements it will not be necessary to ob-
tain exactly result.

Let us consider for example the determination of the accu-
racy of the sensor that must be used to reach a given accuracy
for the positioning of the platform. We will first determine what
will be the accuracy∆X1 of the positioning of the platform for a
unit value of the sensor error. Then, as the relationship between
these two quantities is linear, we will be able to determine what
must be the sensor error∆ρs so that the accuracy of the plat-
form reaches a given value∆Xd. The important point is thatin
many cases only a restricted set of accuracy for the sensor will
be available. Hence the accuracy of the platform need to be de-

termined only to the extent that it will result in a unique possible
value for the accuracy of the sensor. For example if the available
sensor accuracy are 0.1, 0.2 and 0.5 and ifT is able to compute
a range for∆X1 such that∆ρs is in the range [0.3,0.4], then we
are able to decide that we have to use the sensor with the accu-
racy 0.2. Hence, although we have not determinedexactlywhat
will be the worst case accuracy, we can still guarantee that this
choice of sensor error will satisfy the requirement.

Clearly T must be designed so that it only guarantees the
result, especially if getting a guaranteed result is less computer
intensive than getting the exact result.

3.4.3 Exact methods

In some favorable cases it will be possible to solve exactly the
performance evaluation problem. Unfortunately in my experi-
ence this happen only for very simple problems (robot with 2
d.o.f. and very simple requirements). But if such an approach is
possible it should be clearly favored as soon as the computation
time is small.

3.4.4 Hybrid methods

Let us assume that we have to solve an dimensional performance
evaluation problem (i.e. that the number of unknowns in the
problem isn) and that we are able to solve the same problem
exactly when the number of unknowns ism < n, i.e. when
the unknownsxm+1, . . . xn have a fixed value. As we have
in most case to solve an optimization problem (i.e. determine
the extremal valueFm of a given function) we may be able to
determine what may be the maximal change in the unknowns
xm+1, . . . xn such that these changes will not result in a change
of Fm greater than a given thresholdε. Hence using the exact
method with as value forxm+1, . . . xn these new values ensures
that we will determine the optimal value ofFm with an accuracy
less thanε. Repeating this process until the whole workspace has
been explored will ensure that in the worst case the optimum has
been found with an accuracyε. Such method has been proven to
be very efficient for the analysis of some requirements for PKS
over some specific workspace (Merlet 98a; Merlet 98b).

3.5 Alternative optimal design methodologies

3.5.1 Genetic algorithms

Assume now that an efficient performance verification module is
available. This open the door to alternative design methodolo-
gies such as the use of genetic algorithms (GA). In this type of
algorithm individuals have genes that represent values for the de-
sign parameters. An initial population of individuals is initially
selected as parents and they are crossed-over to generate chil-
dren, some of them having genes that are obtained as mutation
of the genes of their parents. Each individual is evaluated with
respect to the design requirements, and selection rules allow to
select only the ”more promising” children that will constitute the
next generation.

GA’s are well known optimization procedures that may
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be used when the function to be optimized are com-
plex. They have been already used in the field of planar
PKS (Boudreau Gosselin 99), although the lack of an efficient
performance verification has restricted their use to simple PKS.
In my opinion GA may be interesting only if we have only fixed
value requirements and cannot be used for a maxima require-
ments as they give guarantee on the result.

3.6 The parameter space approach

Let m be the number of design parameters inP. We define an
m dimensional space, theparameter spaceS , in which each di-
mension is associated to one design parameter (hence each point
in the parameter space defines an unique robot geometry). The
purpose of the parameter space approach is to determine the re-
gions ofS that include all the possible solutions of the design
problem.

To reach this goal, the following approach may be used:

1. select a particular requirementRj , or a relaxed version of
this requirement (for example if the requirement is that the
workspace of the PKS includes a specific Cartesian box
we may relax the requirement by verifying only that the
workspace includes the 8 corners of the box).

2. determine the regionSj of S which include all the robots
satisfyingRj .

3. repeat the process for another requirement.

4. after completing the 3 first steps of this process we have
obtainedm regionsSj . If there is a solution to the optimal
design problem, then it will lie in the intersection of the
regions. At this step we compute this intersectionSi.

5. at this point we have determined all the robots that satisfy
a subset of the requirements. A local approach is then used
to determine the solutions withinSi that satisfy all the re-
quirements.

A key issue in this approach is step 2. We must develop a
generic method that is able to deal with most common require-
ments. This method will rely on an extended version of the stan-
dard verification form, called thestandard design verification
form (SDVF), that takes also into account the design parameters
and will have basically the same structure than the performance
verification module:

• transform the requirements into a SDVF,

• apply a generic toolT to determine the regionSj . Note that
the generic toolT is a special instance ofT in which all the
design parameters have a fixed value.

Although the problem may seem to be quite complex, we
have already obtained some result in this area, especially for
the workspace requirement, either by using a geometrical ap-
proach (Merlet 97) or an interval analysis approach (Merlet 01).

4 Conclusion

Optimal design can be divided into two main topics: topology
synthesis and dimensional synthesis, although it is unclear if
topology synthesis can be separated from dimensional synthe-
sis for PKS. Performances of PKS are highly sensitive to both
type of synthesis; hence optimal design is a crucial issue for the
development of efficient PKS.

We propose to develop a generic method for the optimal de-
sign of PKS, based on the transformation of the requirement into
a reduced set of generic problems that may be treated by an uni-
versal solver. The development of this generic method is a huge
project and can only be the result of a collaborative work between
the researchers working in this field, mathematicians interested
in this type of problems, and end-users. This effort must be co-
ordinated: hence the Computational Kinematics technical Com-
mittee of IFToMM (the International Federation on the Theory
of Machine and Mechanisms) has proposed to coordinate this
effort. Researcher from academy and industry willing to partici-
pate to this research effort are encouraged to look at the Parallel
Structure Initiative (PSI) web site:

http://www-sop.inria.fr/coprin/EJCK/PSI.html

A further problem that has to be taken into account is con-
trol: there is a crucial need for robot controller that are able to
deal efficiently with the inherent non-linearity of PKS and with
its consequence on control, on-line and off-line motion planning,
. . .. In my opinion current controller are not very effective for
PKS. But this is another story. . .

Annex: Interval analysis

Interval analysis is a powerful method initially proposed by
Moore (Moore 79). Let us illustrate this method on a simple
example: letf be the functionx2 − 2x and assume that we are
looking for the solutions off = 0 whenx is in the range[3, 4].
Intuitively it is easy to see that ifx is in [3,4], thenx2 is in [9,16]:
this means that ifx has a particular value in the range [3,4], then
f(x) has a value in the range [9,16] (similarly−2x is in the range
[-8,-6]). Now consider the sum of 2 intervalsA = [a, a], B =
[b, b]. It may be seen thatA + B = [a + b, a + b] = C, which
means that for any value ofx in A andy in B, thenx+y lie in C.
In our case we will writef([3, 4]) = [9, 16]+[−8,−6] = [1, 10].
The resulting interval defines therefore lower and upper bound
for the values off : we may guarantee that for anyx is [3,4]
1 ≤ f(x) ≤ 10. As 0 is not included in the final interval we may
state that there is no zero off for x in the range [3,4]. Note that
the bounds provided by interval analysis are overestimated, the
true range off(x) being [3,8]. However, this does not affect the
validity of the conclusion.

This method works for all the classical mathematical func-
tions such assin, cos, sinh, . . .. Furthermore this method may be
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implemented to take into account numerical round-off errors and
is therefore safe from a numerical view point.

Let us apply this method for a classical problem for PKS.
Assume that we want to verify that a particular Cartesian boxB0

is included in the workspace of a Gough platform, the orientation
of the platform being constant. If the leg lengthsρ of the robot
are restricted to lie in the interval[ρmin, ρmax] we have to verify
that for anyX in B0 we haveρmin ≤ ρ(X) ≤ ρmax. As we
know an analytical form forρ(X) we may determine by using
interval arithmetics a lower and an upper boundρ(X), ρ(X) for
ρ(X) if X lie in a given Cartesian box. The algorithm uses a list
of Cartesian boxL which is initialized to beL = {B0} at the
start andLi will denote thei-th box inL. The algorithm is then,
starting withi = 1:

1. compute
[
ρ(Li), ρ(Li)

]
using interval arithmetics.

2. if ρ(Li) > ρmax or ρ(Li) < ρmin, thenB0 is not included
in the workspace, as every point ofLi, which is included in
B0, is outside the workspace. Send the message ”BOX IS
OUT”.

3. if ρ(Li) ≥ ρmin andρ(Li) ≤ ρmax, thenLi is included in
the workspace, as for any point in this box the leg lengths
are within the limits. Restart at 1 with thei = i + 1.

4. otherwise bisectLi along one of its dimension (eitherx, y
or z) to create two new Cartesian boxes that will be stored
at the end ofL. Restart at 1 with thei = i + 1.

The algorithm either exits at step 2, in which case part ofB0

is outside the workspace, or it stops when all the boxes ofL
have been processed, in which caseB0 is fully included in the
workspace. Note that the previous algorithm is just an outline
of what can be done, and may be improved in many different
aspects.
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Abstract: This paper describes a new structure for a six-
DOF decoupled parallel manipulator. The decoupled
movement of the moving platform is analyzed and its degrees
of freedom is calculated. The inverse and direct kinematics of
the manipulator are presented, and the assembly modes
determined.

1 Introduction

The kinematic structure of most contemporary robots is an
open kinematic chain structure (serial manipulators).
However, robots with closed kinematic chains (parallel
manipulators) have some advantages compared to serial ones:
- Higher payload to weight ratio, since the payload is

supported by several legs in parallel.
- Higher accuracy due to non-cumulative joint error.
- Higher structural rigidity due to closed kinematic

structure.
- Insensitivity positions (singular configurations) with

very high position precision for the output link.
- Usually, actuators are located on the fixed platform.
- Simple solution of the inverse kinematics equations.
- Conversely, they suffer from smaller work space,

uncertainty position, singular configurations and more
complicated direct kinematic solution.

One of the first parallel manipulators, patented by Pollard
(1942), was used for car painting. Later, Gough and
Whitehall (1962) presented a parallel manipulator for tire
testing and Stewart (1965) another one used in a fly
simulator, both manipulators having linear actuators. Hunt
(1983) presented a new parallel manipulator structure with 6
rotary actuators. During these last decades many authors have
shown different parallel kinematic structures, some of them
with linear actuators, others with rotary actuators and some

with a mixture of linear and rotary actuators. Several of these
parallel manipulators can be seen in (Merlet 2000). Also,
these and other examples and references can be found in the
following web sites:
- [http://www-sop.inria.fr/coprin/equipe/merlet/merlet.html].
- [http://www.parallemic.org/].

In most parallel manipulators, actuator movement
influences both position and moving platform direction, but
for some it influences only in the position or direction, these
are called decoupled manipulators.

Examples of different decoupled parallel manipulator
structures are presented for Innocenti and Parenti-Castelli
(1991), Zlatanov et al. (1992), Patarinski and Uchiyama
(1993), Wohlhart (1994), Geng and Haynes (1994), Bernier
et al. (1995), Lee (1995), Lallemand et al. (1997), Ben-Horin
et al. (1998), Brodski et al. (1998), Mianowski (1998) and
Lee and Park (1999).

According to the previous references the Tri-Scott
structure, that is going to be presented, has not been
described before.

2 Tri-Scott structure

The parallel manipulator (Fig. 1) is composed of one fixed
platform with three masts, three modified Scott’s
mechanisms sliding on the masts, and a triangular moving
platform.

The masts are fixed and perpendicular to the fixed
platform and are located in the vertexes of a triangle. Two of
each Scott’s mechanisms turning pairs have been replaced by
two universal joints (K) allowing them to have a spatial
movement instead of a planar one. Each complete Scott’s
mechanism can slide on its corresponding mast. The three
vertexes of the moving platform are attached to the three
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ending points of the Scott’s mechanisms (points 41, 42 and
43).

Figure 1. Tri-Scott parallel manipulator

At each mast, the overall movement of the complete
Scott’s mechanism is introduced by one linear actuator
(actuators 1, 2 and 3), attaching the mechanism to the fixed
platform. The intrinsic movement in each Scott’s mechanism
is introduced by one linear actuator (actuators 4, 5 and 6),
attaching both mechanism sliders.

3 Tri-Scott kinematics

The original Scott’s mechanism (Fig. 2) is a planar straight-
line mechanism. With appropriate dimensions point "P"
describes a straight line. In this mechanism, the pairs "A",
"B" and "C" are revolutes.

Figure 2. Original Scott’s mechanism

Replacing the original Scott’s mechanism turning pairs
"A" and "C" by two spherical pairs (S) or by two universal
joints (K) with two of their turning pairs aligned, a spatial

mechanism is obtained in which point "P" moves on a plane.
Placing pair "C" on a slider, the complete mechanism can
have an overall sliding motion on the mast, (Fig. 3).

Figure 3. Modified Scott’s mechanism

Due to the characteristics of such modified Scott’s
mechanisms, a decoupled movement of the moving platform
is obtained. For example, if movement is only introduced by
actuators "4", "5" and "6", a planar movement of the
moving platform is obtained.

Using the Kutzbach criterion, having into account that
pairs 11, 21, 12, 22, 13 and 23 can be spherical or universal
joints with two of their turning pairs aligned, the moving
platform degrees of freedom are easily found:

DOF = 6 · (14 - 1) - 5 · 9 - 3 · 9 = 6 (1)

3.1  Tri-Scott notation and topology

The notation used to describe the topology of this parallel
manipulator is summarized in the following items and shown
in figures 1, 4 and 5.

Figure 4. Notation of parallel manipulator, perspective
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- i Linear actuator.
- ρi Articular coordinate of the i-th actuator.
- 1i Center of universal joint in the lower slider of the i-th

      Scott’s mechanism.
- 2i Center of universal joint in the upper slider of the i-th

      Scott’s mechanism.
- 3i Center of turning pair in the i-th Scott’s mechanism.
- 4i Center of the spherical joint, vertex of moving

      platform attached to i-th Scott’s mechanism.
- Li Length between centers 2i and 4i, or lengh of the

      longer link of the i-th Scott’s mechanism.
- Aij Length moving platform edge that links

      the i-th and j-th Scott’s mechanisms.
- L'i Length of the horizontal projection of Li, or length

      between centers 1i and 4i.
- A'ij Length of the horizontal projection of the edge Aij.

Figure 5. Notation of parallel manipulator, horizontal
projection

4 Inverse kinematics

Inverse kinematics deals with the determination of the
articular coordinates in terms of the moving platform
position.

The moving platform position is expressed in terms of the
value of the coordinates of the moving platform vertexes
( i4X , i4Y , i4Z ).

It must be noted that although the position of the moving
platform can be stated in a different way, for example by
means of the coordinates of its gravity center and three Euler
angles, it is always easy to determine the coordinates of its
three above mentioned vertexes in terms of the alternative set
of coordinates.

It is evident that in the Scott’s mechanism the articular
coordinates of "1", "2" and "3" actuators are de "Z"
coordinates of the moving platform vertexes, so

3,2,1i;Z i4i ==ρ . (2)

And, as

2
3i

2
i

'
i LL +ρ−= , (3)

the articular coordinates of "4", "5" and "6" actuators will be:

2
141

2
141

2
14 )YY()XX(L −−−−=ρ (4)

2
242

2
242

2
25 )YY()XX(L −−−−=ρ (5)

2
343

2
343

2
36 )YY()XX(L −−−−=ρ (6)

5 Direct kinematic

Direct kinematic deals with the determination of moving
platform position in terms of the input (actuator) coordinates.

Given the articular coordinates "ρi", the " i4Z "
coordinates of the of moving platform vertexes are directly
determined:

.3,2,1i;Z ii4 =ρ= (7)

The lengths of the horizontal projections of the longer
links in the Scott’s mechanisms will be:

2
4

2
1

'
1 LL ρ−= (8)

2
5

2
2

'
2 LL ρ−= (9)

2
6

2
3

'
3 LL ρ−= (10)

And the lengths of the horizontal projections of the edges
of moving platform will be:

2
4142

2
12

'
12 )ZZ(AA −−= (11)

2
4243

2
23

'
23 )ZZ(AA −−= (12)

2
4341

2
31

'
31 )ZZ(AA −−= (13)

Taking into acount the lengths of the projections,
ecuations (8 to 13), the coordinates "X" and "Y" of the
vertexes of moving platform can be determined with the
polynomial method proposed by Gosselin et al. (1992) for
planar parallel manipulators.

Gosselin et al. obtained a sixth degree polynomial which
could get six real solutions, corresponding to the different
assembly modes of the manipulator.
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As Tri-Scott is a spatial mechanism, its moving platform
can turn upside down, for this reason, the Tri-scott have
another six degree polynomial with another six possible
solutions.

As a consequence, the direct kinematics of the Tri-Scott
parallel manipulator presents two sixth degree polynomials
with twelve possible solutions associated with different
assembly modes of the manipulator.

6 Conclusions

In this paper the structure of a new six DOF decoupled
parallel manipulator has been presented. The kinematic
structure is based on three modified Scott’s mechanisms.
With this structure a decoupled movement of the moving
platform is obtained. It is verified that it is a six degree of
freedom mechanism. The inverse kinematics of the
manipulator is presented. Finally, it is presented a closed
form direct kinematics in terms of two polynomials of sixth
degree that have associated  twelve different assembly
modes.
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Abstract: The orthoglide is a 3-DOF parallel mechanism de-
signed at IRCCyN for machining applications. It features three
fixed parallel linear joints which are mounted orthogonally and a
mobile platform which moves in the Cartesian�-�-� space with
fixed orientation. The orthoglide has been designed as function
of a prescribed Cartesian workspace with prescribed kinetostatic
performances. The interesting features of the orthoglide are a
regular Cartesian workspace shape, uniform performances in all
directions and good compactness. A small-scale prototype of the
orthoglide under development is presented at the end of this pa-
per.

1 Introduction

Parallel kinematic machines (PKM) are interesting alternative
designs for high-speed machining applications and have been
attracting the interest of more and more researchers and com-
panies. Since the first prototype presented in 1994 during the
IMTS in Chicago by Gidding&Lewis (the Variax), many other
prototypes have appeared.

However, the existing PKM suffer from two major draw-
backs, namely, a complex Cartesian workspace and highly non
linear input/output relations. For most PKM, the Jacobian ma-
trix which relates the joint rates to the output velocities is not
constant and not isotropic. Consequently, the performances (e.g.
maximum speeds, forces accuracy and rigidity) vary consider-
ably for different points in the Cartesian workspace and for dif-
ferent directions at one given point. This is a serious drawback
for machining applications (Kim (1997); Treib et al. (1998);
Wenger et al. (1999)). To be of interest for machining applica-
tions, a PKM should preserve good workspace properties, that is,
regular shape and acceptable kinetostatic performances through-
out. In milling applications, the machining conditions must re-
main constant along the whole tool path (Rehsteiner (1999);
Rehsteiner et al. (1999)). In many research papers, this crite-

rion is not taking into account in the algorithmic methods used
for the optimization of the workspace volume (Luh et al. (1996);
Merlet (1999)).

The orthoglide optimization is conducted to define a �-axis
PKM with the advantages a classical serial PPP machine tool
but not its drawbacks. Most industrial 3-axis machine-tool have
a serial PPP kinematic architecture with orthogonal linear joint
axes along the x, y and z directions. Thus, the motion of the
tool in any of these directions is linearly related to the motion
of one of the three actuated axes. Also, the performances are
constant in the most part of the Cartesian workspace, which is
a parallelepiped. The main drawback is inherent to the serial
arrangement of the links, namely, poor dynamic performances.

The orthoglide is a PKM with three fixed linear joints
mounted orthogonally. The mobile platform is connected to the
linear joints by three articulated parallelograms and moves in the
Cartesian x-y-z space with fixed orientation. Its workspace shape
is close to a cube whose sides are parallel to the planes ��, ��
and �� respectively. The optimization is conducted on the basis
of the size of a prescribed cubic workspace with bounded veloc-
ity and force transmission factors. Two criteria are used for the
architecture optimization of the orthoglide, (i) the conditioning
of the Jacobian matrix of the PKM (Golub et al. (1989); Salis-
bury et al. (1982); Angeles (1997)) and (ii) the manipulability
ellipsoid (Yoshikawa (1985)).

The first criterion leads to an isotropic architecture and to
homogeneous performances in the workspace. The second cri-
terion permits to optimize the actuated joint limits and the link
lengths of the orthoglide with respect to the aforementioned two
criteria.

Next section presents the orthoglide. The kinematic equa-
tions and the singularity analysis is detailed in Section 3. Sec-
tion 4 is devoted to the optimization process of the orthoglide
and to the presentation of the prototype.
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2 Description of the Orthoglide

Most existing PKM can be classified into two main families.
The PKM of the first family have fixed foot points and vari-
able length struts and are generally called “hexapods”. They
have a Stewart-Gought parallel kinematic architecture. Many
prototypes and commercial hexapod PKM already exist like
the Variax-Hexacenter (Gidding&Lewis), the CMW300 (Com-
pagnie Mécanique des Vosges), the TORNADO 2000 (Hexel),
the MIKROMAT 6X (Mikromat/IWU), the hexapod OKUMA
(Okuma), the hexapod G500 (GEODETIC). In this first family,
we find also hybrid architectures with a 2-axis wrist mounted
in series to a 3-DOF tripod positioning structure (the TRICEPT
from Neos Robotics).

The second family of PKM has been more recently investi-
gated. In this category we find the HEXAGLIDE (ETH Zürich)
which features six parallel (also in the geometrical sense) and
coplanar linear joints. The HexaM (Toyoda) is another exam-
ple with non coplanar linear joints. A 3-axis translational ver-
sion of the hexaglide is the TRIGLIDE (Mikron), which has
three coplanar and parallel linear joints. Another 3-axis trans-
lational PKM is proposed by the ISW Uni Stuttgart with the
LINAPOD. This PKM has three vertical (non coplanar) linear
joints. The URANE SX (Renault Automation) and the QUICK-
STEP (Krause & Mauser) are 3-axis PKM with three non copla-
nar horizontal linear joints. The SPRINT Z3 (DS Technology)
is a 3-axis PKM with one degree of translation and two degrees
of rotations. A hybrid parallel/serial PKM with three parallel in-
clined linear joints and a two-axis wrist is the GEORGE V (IFW
Uni Hanover).

PKMs of the second family are more interesting because the
actuators are fixed and thus the moving masses are lower than in
the hexapods and tripods.

The orthoglide presented in this article is a �-axis transla-
tional parallel kinematic machine with variable foot points and
fixed length struts. Figure 1 shows the general kinematic archi-
tecture of the orthoglide.

The orthoglide has three parallel ����� identical chains
(where � , � and �� stands for Prismatic, Revolute and Parallel-
ogram joint, respectively). The actuated joints are the three or-
thogonal linear joints. These joints can be actuated by means of
linear motors or by conventional rotary motors with ball screws.
The output body is connected to the linear joints through a set
of three parallelograms of equal lengths � � � �	�, so that
it can move only in translation. The first linear joint axis is
parallel to the �-axis, the second one is parallel to the �-axis
and the third one is parallel to the �-axis. In figure 1, the base
points 
�, 
� and 
� are fixed on the ��� linear axis such that

�
� � 
�
� � 
�
�, �� is at the intersection of the first
revolute axis �� and the second revolute axis �� of the ��� paral-
lelogram, and 	� is at the intersection of the last two revolute
joints of the ��� parallelogram. When each ��	� is aligned with
the linear joint axis 
��� , the orthoglide is in an isotropic con-
figuration (see 4.4) and the tool center point � is located at the

intersection of the three linear joint axes. In this configuration,
the base points 
�, 
� and 
� are equally distant from � . The
symmetric design and the simplicity of the kinematic chains (all
joints have only one degree of freedom, Fig. 2) should contribute
to lower the manufacturing cost of the orthoglide.

The orthoglide is free of singularities and self-collisions.
The workspace has a regular, quasi-cubic shape. The in-
put/output equations are simple and the velocity transmission
factors are equal to one along the �, � and � direction at the
isotropic configuration, like in a serial ��� machine (Wenger
et al. (2000)).

B1

i1

P

x
z

y

j1
A1

C1

A2

B2

C2

A3

C3

B3

Figure 1: Orthoglide kinematic architecture
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Figure 2: Leg kinematics

3 Kinematic Equations and Singularity Analysis

3.1 Static Equations

Let �� and � denote the joint angles of the parallelogram about
the axes �� and ��, respectively (fig. 2). Let ��, ��, �� denote the
linear joint variables, �� � 
���. In a reference frame (O, �, �,
�) centered at the intersection of the three linear joint axes (note
that the reference frame has been translated in Fig. 1 for more
legibility) , the position vector p of the tool center point � can
be defined in three different ways:

� �

�
� �� �� � ������� �������� �

�	
���� �������
� �	
����

�
� (1a)
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� �

�
� � �	
����

�� �� � ������� �������� �
�	
���� �������

�
� (1b)

� �

�
� �	
���� �������

� �	
����
�� �� � ������� �������� �

�
� (1c)

where � � �
�, � � 	�� and we recall that � � ��	�, �� �

���.

3.2 Kinematic Equations

Let �� be referred to as the vector of actuated joint rates and �� as
the velocity vector of point � :

�� � � ��� ��� ���
� � �� � � �� �� ���

�� can be written in three different ways by traversing the three
chains 
���	�� :

�� � �� ��� � � ����� � ������ ��� � ��� (2a)

�� � �� ��� � � ����� � ������ ��� � ��� (2b)

�� � �� ��� � � ����� � ������ ��� � ��� (2c)

where �� and �� are the position vectors of the points �� and 	�,
respectively, and �� is the direction vector of the linear joints, for
� � �� ��3.

3.3 Singular configurations

We want to eliminate the two idle joint rates ��� and �� from
Eqs. (2a–c), which we do upon dot-multiplying Eqs. (2a–c) by
�� � ��:

��� � ���
� �� � ��� � ���

��� ��� (3a)

��� � ���
� �� � ��� � ���

��� ��� (3b)

��� � ���
� �� � ��� � ���

��� ��� (3c)

Equations (3a–c) can now be cast in vector form, namely

� �� � � ��

where A and B are the parallel and serial Jacobian matrices, re-
spectively:

� �

�
� ��� � ���

�

��� � ���
�

��� � ���
�

�
� (4a)

� �

�
� �� � �

� �� �
� � ��

�
� (4b)

with �� � ��� � ���
��� for � � �� �� �.

The parallel singularities (Chablat et al. (1998)) occur when
the determinant of the matrix A vanishes, i.e. when ������ � �.
In such configurations, it is possible to move locally the mobile

platform whereas the actuated joints are locked. These singu-
larities are particularly undesirable because the structure cannot
resist any force. Eq. (4a) shows that the parallel singularities oc-
cur when:

��� � ��� � ���� � ��� � ���� � ���

that is when the points ��, 	�, ��, 	�, �� and 	� are copla-
nar (Fig. 3). A particular case occurs when the links � �	� are
parallel (Fig. 4):

��� � ��� �� ��� � ��� �
�

��� � ��� �� ��� � ��� �
�

��� � ��� �� ��� � ���

x

z
y

Figure 3: Parallel singular configuration when� �	� are coplanar

x

z

y

Figure 4: Parallel singular configuration when � �	� are parallel

Serial singularities arise when the serial Jacobian matrix B is
no longer invertible i.e. when ������ � �. At a serial singularity
a direction exists along which any cartesian velocity cannot be
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produced. Eq. (4b) shows that ������ � � when for one leg �,
��� � 	�� � ��� � ���.

The optimization of the orthoglide will put the serial and
parallel singularities far away from the workspace (see 4.4).

4 Design and Performance Analysis of the Orthoglide

For usual machine tools, the Cartesian workspace is generally
given as a function of the size of a right-angled parallelepiped.
Due to the symmetrical architecture of the orthoglide, the Carte-
sian workspace has a fairly regular shape in which it is possible
to include a cube whose sides are parallel to the planes ��, ��
and �� respectively (Fig. 5).

The aim of this section is to define the dimensions of the or-
thoglide as a function of the size �����	
�� of a prescribed cu-
bic workspace with bounded transmission factors. We first show
that the orthogonal arrangement of the linear joints is justified by
the condition on the isotropy and manipulability: we want the
orthoglide to have an isotropic configuration with velocity and
force transmission factors equal to one. Then, we impose that the
transmission factors remain under prescribed bounds throughout
the prescribed workspace and we deduce the link dimensions and
the joint limits.

4.1 Condition Number and Isotropic Configuration

The Jacobian matrix is said to be isotropic when its condition
number attains its minimum value of one (Angeles (1997)). The
condition number of the Jacobian matrix is an interesting perfor-
mance index which characterises the distortion of a unit ball un-
der the transformation represented by the Jacobian matrix. The
Jacobian matrix of a manipulator is used to relate (i) the joint
rates and the Cartesian velocities, and (ii) the static load on the
output link and the joint torques or forces. Thus, the condition
number of the Jacobian matrix can be used to measure the uni-
formity of the distribution of the tool velocities and forces in the
Cartesian workspace.

4.2 Isotropic Configuration of the Orthoglide

For parallel manipulators, it is more convenient to study the con-
ditioning of the Jacobian matrix that is related to the inverse
transformation, 
��. When B is not singular, 
�� is defined
by:

�� � 
�� �� �	�� 
�� � ����

Thus:


�� �

�
� ��������� � ���

�

��������� � ���
�

��������� � ���
�

�
� (5)

with �� � ��� � ���
��� for � � �� �� �.

The matrix 
�� is isotropic when 
��
�� � ������,
where ���� is the �� � identity matrix. Thus, we must have,

�

��
���� � ���� � �

��
���� � ���� � �

��
���� � ���� (6a)

��� � ���
� ��� � ��� � � (6b)

��� � ���
� ��� � ��� � � (6c)

��� � ���
� ��� � ��� � � (6d)

Equation (6a) states that the orientation between the axis of the
linear joint and the link ��	� must be the same for each leg �.
Equations (6b–d) mean that the links � �	� must be orthogonal
to each other. Figure 6 shows the isotropic configuration of the
orthoglide. Note that the orthogonal arrangement of the linear
joints is not a consequence of the isotropy condition, but it stems
from the condition on the transmission factors at the isotropic
configuration (see next section).

4.3 Manipulability Analysis

For a serial ��� machine tool, Fig. 7, a motion of an actuated
joint yields the same motion of the tool (the transmission factors
are equal to one). In the purpose on our study, this factor is
calculated from linear joint to the end-effector.

For a parallel machine, these motions are generally not
equivalent. When the mechanism is close to a parallel singu-
larity, a small joint rate can generate a large velocity of the tool.
This means that the positioning accuracy of the tool is lower in
some directions for some configurations close to parallel singu-
larities because the encoder resolution is amplified. In addition,
a velocity amplification in one direction is equivalent to a loss of
rigidity in this direction.

The manipulability ellipsoids of the Jacobian matrix of
robotic manipulators was defined several years ago (Salisbury
et al. (1982)). This concept has then been applied as a perfor-
mance index to parallel manipulators (Kim (1997)). Note that,
although the concept of manipulability is close to the concept of
condition number, these two concepts do not provide the same in-
formation. The condition number quantifies the proximity to an
isotropic configuration, i.e. where the manipulability ellipsoid is
a sphere, or, in other words, where the transmission factors are
the same in all the directions, but it does not inform about the
value of the transmission factor.

The manipulability ellipsoid of 
�� is used here for (i) justi-
fying the orthogonal orientation of the linear joints and (ii) defin-
ing the joint limits of the orthoglide such that the transmission
factors are bounded in the prescribed workspace.

We want the transmission factors to be equal to one at the
isotropic configuration like for a ��� machine tool. This con-
dition implies that the three terms of Eq. (6) must be equal to
one:

�

��
���� � ���� � �

��
���� � ���� � �

��
���� � ���� � � (7)

which implies that ��� � 	�� and ��� � ��� must be collinear for
each i.

Since, at this isotropic configuration, links ��	� are orthog-
onal, Eq. (7) implies that the links 
��� are orthogonal, i.e. the
linear joints are orthogonal. For joint rates belonging to a unit
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Figure 6: Isotropic configuration of the Orthoglide mecanism

ball, namely, �� ���� � �, the Cartesian velocities belong to an el-
lipsoid such that:

��� �

� � �� � �

The eigenvectors of matrix �

� ��� define the direction of its
principal axes of this ellipsoid and the square roots ��, �� and
�� of the eigenvalues of �

� ��� are the lengths of the afore-
mentioned principal axes. The velocity transmission factors in
the directions of the principal axes are defined by �� � ����,
�� � ���� and �� � ����. To limit the variations of this factor

X

Z

Y

Figure 7: Typical industrial �-axis ��� machine-tool

in the Cartesian workspace, we impose

���� � �� � ���� (8)

throughout the workspace. This condition determines the link
lengths and the linear joint limits. To simplify the problem, we
set ���� � ������.

4.4 Design of the Orthoglide for a Prescribed Workspace

The aim of this section is to define the position of the fixed
point 
�, the link lengths � and the linear actuator range ��
with respect to the limits on the transmission factors defined in
Eq. (8) and as a function of the size of the prescribed workspace
�����	
��.

Our process of optimization is divided into three steps.

1. First, we determine two points �� and �� in the prescribed
cubic workspace such that if the transmission factor bounds
are satisfied at these points, they are satisfied in all the pre-
scribed workspace.

2. The points �� and �� are used to define the leg length � as
function of the size of the prescribed cubic workspace.

3. Finally, the positions of the base points 
� and the linear ac-
tuator range �� are calculated such that the prescribed cu-
bic workspace is fully included in the Cartesian workspace
of the orthoglide.

Step 1: The transmission factors are equal to one at the
isotropic configuration. These factors increase or decrease when
the tool center point moves away from the isotropic configura-
tion and they tend towards zero or infinity in the vicinity of the
singularity surfaces. It turns out that the points �� and �� de-
fined at the intersection of the workspace boundary with the axis
� � � � � (figure 8) are the closest ones to the singularity sur-
faces, as illustrated in figure 9 which shows on the same top view
the orthoglide in the two parallel singular configurations of fig-
ures 3 and 4. Thus, we may postulate the intuitive result that if
the prescribed bounds on the transmission factors are satisfied at
�� and ��, then these bounds are satisfied throughout the pre-
scribed cubic workspace. Although we could not derive a simple
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formal proof, we have verified numerically that this result holds.

Step 2: At the isotropic configuration, the angles � � and �
are equal to zero by definition. When the tool center point �
is at ��, �� � �� � �� � ���� (Fig. 10). When � is at ��,
�� � �� � �� � ���� (Fig. 11).

We pose ���� � � for more simplicity.
On the axis ������, � � � � � and �� � �� � ��. We

note,

� � � � � �  �
� �� � �� � �� � � (9)

Upon substitution of Eq. (9) into Eqs. (1a–c), the angle  can be
written as a function of �,

 � � �����
��	
���� (10)
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Figure 10: �� configuration
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Figure 11: �� configuration

Finally, by substituting Eq. (10) into Eq. (5), the inverse Jacobian
matrix 
�� can be simplified as follows


�� �

�
� � � ��
��� � ��
���
� ��
��� � � ��
���
� ��
��� � ��
��� �

�
�

Thus, the square roots of the eigenvalues of �

� ��� are,

�� � �� ��
���� �� �
� �� � �� � � ��
��� � ��

And the three velocity transmission factors are,

�� �
�

�� ��
���� �� �
� �� � �� �
�

� ��
��� � �� (11)
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Figure 12 depicts ��, �� and �� as function of � along the axis
������.
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Figure 12: The three velocity transmission factors as function of
� along the axis ������

The joint limits on � are located on both sides of the isotropic
configuration. To calculate the joint limits, we solve the follow-
ing inequations,

�

����

� �

�� ��
���� �� � ���� (12a)

�

����

� �

� ��
��� � �� � ���� (12b)

where the value of ���� depends on the performance require-
ments. Two sets of joint limits (����

��
 and ����

��
) are

found. The detail of this calculation is given in the Appendix.
The position vectors �� and �� of the points �� and ��,

respectively, can be easily defined as a function of � (Figs. 10
and 11),

�� � ��� �� ��
� �
� �� � ��� �� ��

� (13a)

with

�� � � �	
���
�� �
� �� � � �	
���

�� (13b)

The size of the Cartesian workspace is,

�����	
�� � ��� � ���

Thus, � can be defined as a function of �����	
��.

� �
�����	
��

� �	
���
�� �	
���

��

Step 3: We want to determine the positions of the base
points, namely, �. When the tool center point P is at � �

�
defined

as the projection onto the �-axis of ��, � � � and, (Fig. 13)

�
� � ���

�
���

�
	� � 	�
�

C1

x

y
Q2

B1

B2

A1

A2

Q’1

a

C2

Q1

e

L

Figure 13: The point ��

�
used for the determination of �

with �
� � �, ���

�
� ��, ��

�
	� � �	� � �� and since

� � �, 	�
� � 	��� � �. Thus,

� � �� � �� �

Since �� is known from Eqs. (13a) and (19b), � can be cal-
culated as function of �, � and ����.

Now, we have to calculate the linear joint range �� � ����

(we have posed ����=0).
When the tool center point � is at ��, � � ����. The

equation of the direct kinematics (Eq. (1b)) written at � � yields,

���� � �� � �� �������
� ������

��� �

4.5 Prototype

Using the aforementioned two kinetostatic criteria, a small-scale
prototype is under development in our laboratory. The mechani-
cal structure is now finished, (Fig. 14). The actuated joints used
for this prototype are rotative motors with ball screws. The pre-
scribed performances of the orthoglide prototype are a Carte-
sian velocity of ������ and an acceleration of ������ at the
isotropic point. The desired payload is � !. The size of its pre-
scribed cubic workspace is ���� ���� ��� ��. We limit the
variations of the velocity transmission factors as,

��� � �� � � (14)

The resulting length of the three parallelograms is � � �����
and the resulting range of the linear joints is � � � ��� ��.
Thus, the ratio of the range of the actuated joints to the size of the
prescribed Cartesian workspace is " � ������� � ����. This
ratio is high compared to other mechanisms. The three velocity
transmission factors are depicted in Fig. 15. These factors are
given in a �-cross section of the Cartesian workspace passing
through ��.
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Figure 14: The orthoglide prototype
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Figure 15: The three velocity transmission factors in a �-cross
section of the Cartesian workspace passing through ��

5 Conclusions

Presented in this paper is a new kinematic structure of a PKM
dedicated to machining applications: the Orthoglide. The main
feature of this PKM design is its trade-off between the popular
serial PPP architecture with homogeneous performances and the
parallel kinematic architecture with good dynamic performances.

The workspace is simple, regular and free of singularities
and self-collisions. The Jacobian matrix is isotropic at a point
close to the center point of the workspace. Unlike most existing
PKMs, the workspace is fairly regular and the performances are
homogeneous in it. Thus, the entire workspace is really available
for tool paths. In addition, the orthoglide is rather compact com-
pared to most existing PKMs. A small-scale prototype of this
mechanism is under construction at IRCCyN. First experiments
with plastic parts will be conducted. The dynamic analysis has
not been reported in this article. A rigid dynamic model has been
proposed in (Guegan et al. (2002) and an elastic dynamic model
is now being developed with the software package Meccano.
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6 Appendix

To calculate the joint limits on � and , we solve the followings
inequations, from the Eqs. 12,

�� ��
��� � �� � ���� (15a)

�

�� ��
��� � �� � ���� (15b)

Thus, we note,

#� � �� ��
��� � �� #� � ���� ��
��� � �� (16a)

Figure (16) shows #� and #� as function of � along ������. The
four roots of #� � #� in ��$ $ are,

�� � � �����

�
�� �

�
�����

�
(17a)

�� � � �����
 ����� (17b)

�� � � (17c)

�� � �����

�
��� �

�
�����

�
(17d)

with

#����� � ��� �
�
����� #����� � � (17e)

#����� � � #����� � �� �
�
����� (17f)
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Figure 16: #� and #� as function of � along ������

and

#���� � � ���
 � � �����
������ $ (18a)

#���� � � ���
 � � �����
������ (18b)

The isotropic configuration is located at the configuration where
� �  � �. The limits on � and  are in the vicinity of this
configuration. Along the axis ������, the angle � is lower than
� when it is close to ��, and greater than � when it is close to
��.

To find ���
, we study the functions #� and #� which are both

decreasing on �� �����
�����. Thus, we have,

���
� �����


�
���� � �

�����

�
(19a)

��
� � �����


	
���� � �


���
��� � ����� � �

�
(19b)

In the same way, to find ���
, we study the functions #� and #�

on ��� �. The three roots ��, �� and �� define two intervals. If
���� � �#����� #�����, we have,

���
� � �����


�
���� � �

����

�
(20a)

��
� �����


	
���� � �


���
��� � ����� � �

�
(20b)

otherwise, if ���� � �#����� #�����,

���
� � �����


�
���� � �

�

�
(20c)

��
� �����


	
���� � �


����
� � ����� � �

�
(20d)
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Québec, Qúebec, Canada, G1K 7P4
xwkong@gmc.ulaval.ca
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Abstract: A class of LTPMs (3-legged 3-DOF translational par-
allel manipulators with linear Input-Output equations) is first
proposed. The proposed LTPMs may or may not contain some
inactive joints or redundant DOFs. The inverse kinematics, the
forward kinematics, and the kinematic singularity analysis of the
LTPMs are then performed. The analysis shows that the pro-
posed LTPMs have the following kinematic merits, namely: (1)
The forward displacement analysis and the inverse displacement
analysis can be performed by solving a set of linear equations;
(2) The Jacobian matrix of the LTPMs is constant. The inverse of
the Jacobian matrix can be pre-calculated, and there is no need
to calculate repeatedly the inverse of the Jacobian matrix in per-
forming the forward displacement analysis and the forward ve-
locity analysis; (3) There exists no rotation singularity; (4) There
exists no uncertainty singularity. Finally, the geometric condi-
tion for a LTPM to be isotropic is also revealed. Two additional
kinematic merits exist for the isotropic LTPM. The first is that an
isotropic LTPM is isotropic in any of its configurations within its
workspace. The second is that fewer calculations are needed in
order to pre-determine the inverse of the Jacobian matrix.

Key words: Translational parallel manipulator, Kinemat-
ics, Singularity analysis, Isotropic manipulator, Screw theory,
Linear Input-Output equations

1 Introduction

Three-DOF translational parallel manipulators (TPMs) have a
wide range of applications such as assembly and machining.
Several types of TPMs have been proposed (Clavel, 1990; Ap-
pleberry, 1992; Herv́e and Sparacino, 1991; Hervé, 1995; Di Raf-
faele and Parenti-Castelli, 1998; Tsai, 1999a,b; Zhao and Huang,
2000; Carricato and Parenti-Castelli, 2001; Jin and Yang, 2001).
Systematic studies on the generation of 3-DOF TPMs are per-
formed using respectively the displacement group theory (Hervé
and Sparacino, 1991; Hervé, 1995), screw algebra (Frisoli et al.,
2000) or screw theory (Kong and Gosselin, 2001a). It is revealed

in (Di Raffaele and Parenti-Castelli, 1999) that there exists rota-
tion singularities for the 3-UPU TPMs.

In fact, previous works on the systematic type synthesis of
TPMs (Herv́e and Sparacino, 1991; Frisoli et al., 2000; Kong and
Gosselin, 2001a) deal mainly with the systematic type synthesis
of translational parallel kinematic chains.1 Some important is-
sues in obtaining TPMs such as the selection of inputs (Kong
(1999)), have not been dealt with systematically.

Recently, Kong and Gosselin (2001b, 2002) revealed the
condition for all the translational degrees of freedom of the C
(cylindrical) joints of the 3-CRR translational parallel kinematic
chain, which is proposed in Hervé and Sparacino (1991), to be
actuated and thus proposed a 3-CRR TPM with linear actua-
tors. Here and throughout, C, P and R are used to denote a C
joint whose translational DOF is actuated, an actuated prismatic
joint and an unactuated revolute joint respectively. It has been
revealed that both the forward displacement analysis and the in-
verse displacement analysis of the 3-CRR TPM can be solved by
solving a set of linear equations.

This paper tries to perform a systematic study on LTPMs
(3-legged 3-DOF translational parallel manipulators with lin-
ear Input-Output equations) based on the results of type synthe-
sis of translational parallel kinematic chains (Hervé and Spara-
cino, 1991; Herv́e, 1995; Frisoli et al., 2000; Kong and Gosselin,
2001a) as well as our previous work (Kong and Gosselin, 2002).
In Section 2, the geometric description of a class of LTPMs is
first given. The inactive joints, the dependent joint groups and
the redundant DOFs of LTPMs are revealed. The rotation sin-
gularity analysis is also performed. The inverse kinematics and
forward kinematics is dealt with in Section 3. In Section 4, the
kinematic singularity analysis of the LTPMs is investigated. The
geometric condition for the isotropic LTPMs is revealed in Sec-
tion 5. Finally, conclusions are drawn.

1A translational parallel kinematic chain differs from a translational parallel
manipulator in that the inputs have not been selected in the former while the
inputs have been selected in the latter.
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2 Description of the LTPMs

2.1 Proposed LTPMs

Each of the proposed LTPMs (Kong and Gosselin (2001b)) is
composed of a base and a moving platform connected by three
legs2 in parallel (Fig. 1, Here and throughout, each of the R joints
with parallel axes within a leg for LTPMs is denoted byR̄.) . The
proposed LTPMs satisfy the following conditions.

(a1) Each leg for parallel manipulators is composed of a
group of at least three R joints with parallel axes and at most
one R joint whose axis is not parallel to the axes of the R joints
in the group of R joints with parallel axes, while the axis of the P
joint is not perpendicular to the axes of the R joints in the group
of R joints with parallel axes.

(a2) For a parallel manipulator in which all the axes of the R
joints in each of its legs are parallel, the axes of all the R joints
of the parallel manipulator should not be parallel to a line. For
a parallel manipulator in which not all the axes of the R joints
in each of its legs are parallel and for which the R joints not be-
longing to the groups of R joints with parallel axes are connected
to the moving platform or the base through a P joint or located
on the moving platform or the base, then the three lines, each of
which is perpendicular to the axes of all the R joints of one leg,
should not be parallel to a plane.

(b) The axes of all the R joints in all the groups of R joints
with parallel axes are not parallel to a plane.

(c) All P joints are actuated.

As will be proved in the following sections, the PMs satis-
fying the above conditions are LTPMs.

2.2 Working principle of LTPMs

2.2.1 Proposed PMs are TPMs

In screw theory, the motion and constraints of a kinematic chain
are represented by screw systems, which are termed as twist sys-
tems and wrench systems respectively (see Hunt (1978) and Ku-
mar et al. (2000) for example).

Under condition (a1), the wrench system of a leg will be a
2-system of∞-pitch 3 in the case of a leg in which the axes of
the R joints are all parallel or a 1-system of∞-pitch in the case
of a leg in which not all the axes of the R joints are parallel. It
is noted that the axis of each wrench of a leg is perpendicular to
the axes of all the R joints within the same leg.

Under conditions (a1) and (a2), the wrench system of the
parallel manipulator, which is the union of the wrench systems
of all its legs, will be a 3-system of∞-pitch. The 3 DOFs of rota-
tion of the moving platform are thus eliminated, and the moving
platform can only translate with respect to the base.

2A leg in a parallel manipulator is a serial kinematic chain connecting the
base and the moving platform. It is also called a limb.

3A∞-pitch wrench is actually a couple in common usage.

B

Leg 1

Leg 2

Leg 3

C

B

Moving Platform

B

2

3

1

1

α C

α

3

3

2C

α

2

1

Base

(a) 3-P̄RR̄R̄ TPM.

B

Leg 3

Base

C3

3

Leg 1

Leg 2
B

B

C

C

1

1

2

2

Moving Platform

(b) 3-PR̄R̄R̄R TPM.

Leg 3

C

B

Base

Moving Platform

3
Leg 1

Leg 2B

B

C

C

3

1

1

2

2

(c) 3-PRR̄R̄R̄ TPM.

B

C

Base

Leg 3

3

3

Leg 1

Leg 2
B

B

C

C

Moving Platform

1

1

2

2

(d) 3-RP̄RR̄R̄ TPM.

Leg 3

C

B

Base

Moving Platform

3

3
Leg 1

Leg 2
B

B

C
C

1

1

2

2

(e) 3-P̄RR̄R̄R̄ TPM.

3

Leg 3

3

Moving Platform

B

C

Base

Leg 1

Leg 2
B

B

C
C

1

1

2

2

(f) 3-PR̄R̄R̄R̄R TPM.

Leg 3

C

B

Base

Moving Platform

3

3
Leg 1

B

B

C
C2

2

Leg 2

1

1

(g) 3-PRR̄R̄R̄R̄ TPM.

Leg 3

C

B

3

3

Leg 1

Leg 2
B

B
Moving Platform

C

C

2

2

1

1

Base

(h) 3-RP̄RR̄R̄R̄ TPM.

Figure 1: Proposed LTPMs.
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2.2.2 All P joints can be actuated

Under condition (b), the union of the effective wrenches of all
legs form a 3-system of 0-pitch. Once the inputs of the P joints
are given, the translation of the moving platform can be deter-
mined.

The effective wrenches4 of a leg are the wrenches reciprocal
to all the twist of its joints except the twist of the actuators. It is
noted that the axes of the effective wrenches of a leg for LTPM
is parallel to the axes of the R joints in the group of R joints with
parallel axes.

2.3 Inactive joints, dependent joint groups, redundant
DOFs of a LTPM

2.3.1 Inactive joints and dependent joint groups of a LTPM

A general leg for LTPMs is composed of(n − 1) R joints and 1
P joint. For the purposes of simplification, the P joint is labeled
with 1, while the R joints are labeled with 2, 3,· · ·, andn in the
sequence from the base to the moving platform.

The infinitesimal change of orientation of the moving plat-
form in a serial kinematic chain undergoing infinitesimal joint
motion is

∆R =
n∑

i=2

(∆θisi) (1)

where∆R and∆θi denote the infinitesimal change of orientation
of the moving platform and the infinitesimal joint motion of joint
i respectively;si denotes the unit vector along the axis of jointi
before the infinitesimal motion.
For a TPM, there exists

∆R = 0 (2)

Substitution of Eq. (1) into Eq. (2) yields

n∑
i=2

(∆θisi) = 0 (3)

Case 1Legs in which all the axes of the R joints are parallel.
For a leg in which all the axes of the R joints are parallel,

there exists

sn = sn−1 = · · · = s2 (4)

Substitution of Eq. (4) into Eq. (3) yields

n∑
i=2

∆θis2 = 0 (5)

Solving Eq. (5), we have

n∑
i=2

∆θi = 0 (6)

4Similar terms have been defined previously by several authors (e.g., Agrawal
(1991)).

Case 2Legs in which not all the axes of the R joints are parallel.
For the purposes of simplification, we make the assumption

that the only R joint whose axis is not parallel to the axes of the
other R joints are labeled with 2. For a leg in which not all the
axes of the R joints are parallel, there exists

sn = sn−1 = · · · = s3 6= s2 (7)

Substitution of Eq. (7) into Eq. (3) yields

∆θ2s2 +
n∑

i=3

∆θis3 = 0 (8)

Solving Eq. (8), we have

∆θ2 = 0 (9)

and

n∑
i=3

∆θi = 0 (10)

Eqs. (6) and (10) show that the R joints with parallel axes
within the same leg constitute a dependent joint group (Fig. 1).
Eq. (9) shows that in a leg in which not all the axes of the R joints
are parallel, the only R joint whose axis is not parallel to the axes
of the other R joints is inactive (Figs. 1(b)–1(d) and 1(f)–1(h)).

Inactive joints have been intensionally used in Kong and
Gosselin (2001b) to reduce the number of over-constraints of a
TPM. Kim also proposed a TPM containing an inactive joint in
each of its legs (Kim, 2001). However, he may not have real-
ized that these joints were inactive since he didn’t mention the
inactive joint.

2.3.2 Redundant DOFs of a LTPM

For a LTPM, if there existn(n > 3) R joints with parallel axes
in one of its leg, there exist(n − 3) redundant DOFs within the
n R joints.

The redundant DOFs do not affect the Input-Output equa-
tions of the LTPMs (Figs. 1(c) and 1(d)). However, they can be
used in link-interference avoidance or in auxiliary operation of
the LTPM.

2.4 Rotation singularity analysis of the LTPM

The rotation singularity (Di Raffaele and Parenti-Castelli, 1999)
occurs when the moving platform of a TPM can rotate instanta-
neously.

It is clear that the rotation singularity occurs for a TPM if
and only if its wrench system (a 3-system of∞-pitch) degener-
ates into a 2-system or 1-system.

For those LTPMs with no inactive joints and those LTPMs in
which all the inactive joints are connected to the moving platform
or the base through a P joint or located on the moving platform
or the base, the wrench system of a leg for LTPMs is invariant
(Section 2.2). The order of the wrench system of these LTPM is
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thus a constant. Thus, the moving platform cannot rotate at any
instant. That is to say, there is no rotation singularity for these
LTPMs.

For other LTPMs, the wrench system of a leg for LTPMs is
not invariant. When the three lines, each of which is perpendic-
ular to the axes of all the R joints within one leg, are parallel to a
plane, the rotation singularity occurs.

2.5 Preferred LTPMs

By changing the order of different joints, many types of LTPMs
can be obtained. For practical reason, LTPMs should satisfy the
following conditions.

• (1) All the legs of a LTPM are of the same type.

• (2) Each of the actuators is located on or connected through
an inactive joint to the base.

• (3) The LTPM has no rotation singularity.

• (4) The number of redundant DOF of a leg is not greater
than 1.

• (5) The number of inactive joint of a leg is not greater than
1.

The LTPMs satisfying the above conditions are shown in
Fig. 1. The number of inactive joints, the redundant DOF and the
number of over-constraints of these LTPMs are listed in Table 1.

Table 1: LTPMs

No Type Number of Redundant Number of

inactive joints DOFs over-constraints

1 3-PR̄R̄R̄ 0 0 3

2 3-PR̄R̄R̄R 3 0 0

3 3-PRR̄R̄R̄ 3 0 0

4 3-RPR̄R̄R̄ 3 0 0

5 3-PR̄R̄R̄R̄ 0 3 3

6 3-PR̄R̄R̄R̄R 3 3 0

7 3-PRR̄R̄R̄R̄ 3 3 0

8 3-RPR̄R̄R̄R̄ 3 3 0

When a combination of one R joint and one P joint with
parallel axes arises, or a combination of two R joints with inter-
secting non-parallel axes arises, they can be replaced with a C
joint and U (universal) joint respectively. Many specific cases of
LTPMs can be obtained in this way. For brevity reason, we only
give the specific cases of LTPMs when necessary.

2.6 Equivalent LTPM

It is clear that the removal of the inactive joints and redundant
joints from a LTPM does not affect the Input-Output equations
of the LTPM. The LTPM thus obtained from a LTPM by remov-
ing all the inactive joints and redundant joints is termed as the
equivalent LTPM of the original LTPM.

It is found that the LTPMs proposed above have the same
equivalent LTPM, namely, the 3-P̄RR̄R̄ LTPM 5 described above.

3 Kinematic analysis of LTPMs

As all the LTPMs are kinematically equivalent to the 3-PR̄R̄R̄
LTPM, the kinematic analysis of all the LTPMs can be performed
in the same way as that of the 3-PR̄R̄R̄ LTPM.

To study the kinematics of the 3-P̄RR̄R̄ LTPM, two coordi-
nate systems,P −XP YP ZP andO −XY Z, are attached to its
moving platform and base respectively. In legi (denoted by the
subscripti), let Bi denote a point on the axis of the R joint on
the moving platform,Ci denote a point on the axis of the R joint
adjacent to the P joint,Ai denote a point on the axis of the P
joint on the link connected to the base by the P joint,Ai0 denote
the point on the base which is coincident with the initial position
of Ai, si2 denote the unit vector along the R joint,si1 denote the
unit vector along the P joint,bPi denote the vector fromP to Bi,
cAi denote the vector fromAi to Ci, ai andai0 denote respec-
tively the position vectors ofAi andAi0 in the coordinate system
O −XY Z, andSi denote the inputi of the 3-P̄RR̄R̄ LTPM.

For purposes of simplification and without loss of generality,
theXP -, YP -, ZP -axes of the coordinate systemP −XP YP ZP

are respectively parallel to theX-, Y -, Z-axes of the coordinate
systemO−XY Z, Bi andCi are chosen in such a way thatAiCi

is perpendicular tosi2.

3.1 Inverse kinematics of the 3-P̄RR̄R̄ LTPM

3.1.1 Inverse displacement analysis

The inverse displacement analysis of the 3-PR̄R̄R̄ LTPM consists
in determining the required inputs,Si (i=1, 2, 3), for a given po-
sition,p, of the moving platform, wherep is the vector directing
from pointO to pointP .

As there exists no rotation singularity for the 3-PR̄R̄R̄
LTPM, CiBi (i=1, 2, 3) is perpendicular to the axis of the R
joint i at any instant, i.e.,

sT
i2[p + bPi − (ai0 + Sisi1 + cAi)] = 0 i=1, 2, 3 (11)

Expanding Eq. (11), we have

sT
i2si1Si = sT

i2(p + bPi − ai0 − cAi) i=1, 2, 3 (12)

From condition (a1) in Section 2.1, we havesT
i2si1 6= 0. Solv-

ing Eq. (12), we obtain the solution to the inverse displacement

5The 3-PRRR translational parallel kinematic chain was implicitly proposed
by Herv́e and Sparacino (1991).
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analysis

Si = sT
i2(p + bPi − ai0 − cAi)/sT

i2si1 i=1, 2, 3 (13)

For anyp within the workspace, the distance between points
Bi andCi is no greater than the total of the lengths of all the RR
binary links in legi. In the case the distance between pointsBi

andCi is greater than the total of the lengths of all the RR binary
links in legi, the set of inputs are invalid as the LTPM cannot be
assembled.

Let ∆p denote an increment ofp and∆Si denote the corre-
sponding increment ofSi. From Eq. (13), we have

Si + ∆Si = sT
i2(p + ∆p + bPi − ai0 − cAi)/sT

i2si1 i=1, 2, 3 (14)

Subtracting Eq. (13) from Eq. (14), we obtain the solution to the
inverse displacement analysis in incremental form

∆Si = sT
i2∆p/sT

i2si1 i=1, 2, 3 (15)

3.1.2 Inverse velocity analysis

The inverse velocity analysis of the 3-PR̄R̄R̄ LTPM con-
sists in determining the required velocities of the actuators,
Ṡi(=dSi/dt), for a given velocity,v=(dp/dt), of the moving
platform in a given configuration.

Differentiating Eq. (13) with respect to time, we obtain the
solution to the inverse velocity analysis

Ṡi = sT
i2v/sT

i2si1 i=1, 2, 3 (16)

3.2 Forward kinematics of the 3-P̄RR̄R̄ LTPM

3.2.1 Forward displacement analysis

The forward displacement analysis of the 3-PR̄R̄R̄ LTPM con-
sists in determining the position,p, of the moving platform for a

given set of inputs,Si.
From Eq. (11), we have

sT
i2p = sT

i2(ai0 + cAi + Sisi − bPi) i=1, 2, 3 (17)

Rewriting Eq. (17) in matrix form, we have

J1p =

 sT
12(a10 + cA1 + S1s11 − bP1)

sT
22(a20 + cA2 + S2s21 − bP2)

sT
32(a30 + cA3 + S3s31 − bP3)

 (18)

where

J1 =

 sT
12

sT
22

sT
32

 (19)

Solving Eq. (18), we obtain the solution to the forward displace-
ment analysis

p = J−1
1

 sT
12(a10 + cA1 + S1s11 − bP1)

sT
22(a20 + cA2 + S2s21 − bP2)

sT
32(a30 + cA3 + S3s31 − bP3)

 (20)

It should be pointed out that for a vectorp obtained using
Eq. (20) with a set of valid inputs, the distance between points
Bi andCi is no greater than the total of the lengths of all the RR
binary links in legi. In the case the distance between pointsBi

andCi is greater than the total of the lengths of all the RR binary
links in legi, the set of inputs are invalid as the LTPM cannot be
assembled.

Rewriting Eq. (15) in matrix form, we have

J∆p =

 ∆S1

∆S2

∆S3

 (21)

where

J =

 sT
12/s

T
12s11

sT
22/s

T
22s21

sT
32/s

T
32s31


= diag(1/sT

12s11 1/sT
22s21 1/sT

32s31)J1 (22)

Solving Eq. (21), we obtain the solution to the forward displace-
ment analysis in incremental form

∆p = J−1

 ∆S1

∆S2

∆S3

 (23)

where

J−1 = J−1
1 diag(sT

12s11 sT
22s21 sT

32s31) (24)
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3.2.2 Forward velocity analysis

The forward velocity analysis of the 3-P̄RR̄R̄ LTPM consists in
determining the velocity,v, of the moving platform for a given
set of velocities of the actuators,Ṡi, in a given configuration.

Rewriting Eq. (16) in matrix form, we have Ṡ1

Ṡ2

Ṡ3

 = Jv (25)

Solving Eq. (25), we obtain the solution to the forward velocity
analysis

v = J−1

 Ṡ1

Ṡ2

Ṡ3

 (26)

3.3 Discussion on the Jacobian MatrixJ

From Eq. (22), it can be found that each row of the Jacobian
matrix,J, is proportional to the unit vector along the axes of the
R joints within one leg. As the unit vector along the axes of all
the R joints are invariant, the Jacobian matrix,J, is constant.

For a given 3-P̄RR̄R̄ LTPM, the inverse ofJ is therefore also
constant and can be pre-calculated. Thus, there is no need to cal-
culateJ−1 repeatedly in performing the forward position anal-
ysis and forward velocity analysis of the 3-PR̄R̄R̄ LTPM. This
simplifies to a great extent the real-time control of the 3-PR̄R̄R̄
LTPM.

As J andJ−1 are constant, from Eqs. (21) and (23), there
will be a same∆p corresponding to a given∆Si in any config-
uration of a LTPM, and vice visa. Thus, both the inverse dis-
placement analysis and the forward displacement analysis will
be further simplified if the LTPM is used with relative position
control.

4 Kinematic singularity analysis of the LTPMs

4.1 Inverse kinematic singularity analysis

The inverse kinematic singularities occur for a parallel manipu-
lator when the order of the twist system of any one of the legs
decreases instantaneously. For a leg for LTPMs, an inverse kine-
matic singularity occurs if and only if the axes of all the R joints
with parallel axes are coplanar. In this case, the distance between
pointsBi andCi is equal to the total of the lengths of all the
RR binary links in legi. These configurations correspond to a
boundary of the workspace. The inverse kinematic singularities
at the boundary of the workspace can be eliminated by limiting
the range of motion of the actuated joints.

4.2 Uncertainty singularity analysis

When uncertainty singularities occur for a parallel manipulator,
the moving platform can undergo infinitesimal or finite motion

when the inputs are locked. It will be proved below that there
exists no uncertainty singularity for the LTPMs.

From Section 2.4, it is known that there exists no rotation
singularity for the LTPMs. Thus, Eq. (25) is always satisfied.
Uncertainty singularities for the LTPMs occur if and only ifJ is
singular.

From Section 3.3, it is known that each row of the Jacobian
matrix,J, is proportional to the unit vector along the axes of the
R joints of the group of R joints with parallel axes of one leg.
As the axes of the R joints belong to the groups of R joints with
parallel axes are not all parallel to a common plane (see Section
2), J is always non-singular. There thus exists no uncertainty
singularity for the LTPMs.

4.3 Discussion on the choice of working mode

The working mode of a parallel manipulator is introduced in
Chablat and Wenger (1998) for a better control and application of
parallel manipulators. However, the definition of working mode
given in Chablat and Wenger (1998) does not apply to the LTPMs
proposed here since it is defined based on the Input-Output ve-
locity equation and the unactuated joint variables are neglected.
In this section, the working mode of parallel manipulators is gen-
eralized to cover the LTPMs with no redundant DOF. The choice
of working mode of LTPMs is also discussed.

In performing the inverse displacement analysis of a parallel
manipulator, any one of its legs can be treated as a serial manip-
ulator. The concept of postures of serial manipulator can also
be applied to a leg in a parallel manipulator. A working mode
of a parallel manipulator is defined as a combination of the pos-
tures of all its legs. For a parallel manipulator having multiple
solutions to its inverse displacement analysis, there are multiple
working modes. The postures of at least one leg are different in
different working modes of a parallel manipulator.

Consider a LTPM with no redundant DOF. For a given po-
sition of the moving platform, there usually exist two sets of so-
lutions to the joint variables of the unactuated joints for each leg
and eight solutions to the inverse displacement analysis of the
LTPM. The LTPM has thus 8 working modes. The joint variables
of the unactuated joints in at least one leg are different between
two working modes while the inputs are the same for a given
position of the moving platform. Different working modes are
separated by the inverse singularity of one or more legs. If the
link interference is neglected and the ranges of joint motions are
not limited, the workspaces of the manipulator under the differ-
ent working modes are the same.

In practice, the assembly mode with higher stiffness and in
which link interference can be easily avoided should be selected
to perform a required task. If the inverse kinematic singulari-
ties at the boundary of the workspace are eliminated by limiting
the range of motion of the actuated joints, a LTPM will always
remains in the working mode in which it was first assembled.
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Figure 3: Isotropic 3-CR̄R̄ TPM (Kong and Gosselin, 2002).

5 Isotropic LTPMs

An isotropic manipulator (Angeles, 1997) is a manipulator
whose Jacobian matrix has a condition number equal to 1 in at
least one of its configurations. In isotropic configurations, the
manipulator performs very well with regard to the force and mo-
tion transmission. Except the 3-CRR TPM proposed in Kong
and Gosselin (2002), isotropic manipulators proposed so far are
isotropic only in a small portion of their workspace. In the
following, the geometric condition which renders the LTPMs
isotropic will be revealed and it will be proved that the isotropic
LTPMs are isotropic in their whole workspace.

As each row of the Jacobian matrix,J, is proportional to the
unit vector along the axes of R joints in the group of R joints
with parallel axes of one leg (Section 3.3), it can be easily found
that when the axes of the three R joints are orthogonal and the
abs(sT

i2si1) for all three legs are equal, the LTPM is isotropic,
i.e., the condition number of the Jacobian matrix is 1. As the
Jacobian matrix,J, of the LTPM is constant (Section 3.3), the
isotropic LTPM is isotropic in its whole workspace.

In this case,J1 (see Eq. (19)) is an orthogonal matrix. One
has

J−1
1 = JT

1 (27)

Substitution of Eq. (27) into Eq. (24) yields

J−1 =
[

sT
12s11s12 sT

22s21s22 sT
32s31s32

]
(28)

Thus, fewer calculations are needed in obtaining the inverse
of the Jacobian matrix when performing the forward kinematic
analysis of isotropic LTPM. Moreover, if the coordinate system
O−XY Z fixed to the base is defined such that vectorss12, s22,
ands32 are respectively aligned with theX-, Y -, andZ-axes of
O−XY Z, then the Jacobian matrix becomes a constant diagonal
matrix with identical elements. Hence the inverse displacement
analysis as well as the forward displacement analysis and the as-
sociated velocity problems are further simplified.

In order to make a comprehensive comparison of the
LTPMs, several prototypes are being developed in the Robotics
Laboratory at Laval University. In addition to the isotropic 3-
CRR LTPM shown in Fig. 3, the isotropic 3-P̄RR̄R̄R LTPM

Figure 4: Isotropic 3-P̄RR̄R̄R TPM.

with the axes of actuators arranged in parallel (Fig. 4) is another
potential application. As compared with the isotropic 3-CRR
LTPM, the isotropic 3-P̄RR̄R̄R LTPM is not-overconstrained and
has a larger workspace along the the direction parallel to the axes
of the P joints.

6 Conclusions

A class of LTPMs has been proposed. The LTPMs may or may
not contain some inactive joints and redundant DOFs. The in-
verse kinematics, the forward kinematics, and the kinematic sin-
gularity analysis of the LTPMs have been performed. It has been
shown that the proposed LTPMs have the following kinematic
merits, namely: (1) Both the forward displacement analysis and
the inverse displacement analysis can be performed by solving a
set of linear equations. There exists only one solution to the po-
sition of the moving platform for a given set of inputs, and vice
versa; (2) The Jacobian matrix of the LTPMs is constant. The
inverse of the Jacobian matrix can be pre-calculated, and there is
no need to calculate repeatedly the inverse of the Jacobian matrix
in performing the forward displacement analysis and forward ve-
locity analysis; (3) There exists no rotation singularity; (4) There
exists no uncertainty singularity.

The geometric condition which makes the LTPMs isotropic
has also been revealed. Two additional kinematic merits exist
for the isotropic LTPMs. The first is that an isotropic LTPM is
isotropic in its whole workspace. The second is that fewer cal-
culations are needed to pre-determine the inverse of the Jacobian
matrix.

Two approaches have been adopted in the work of this paper,
i.e., the approach based on screw theory and the method based on
the differentiation of the constraint equations. The first approach
is used in the rotation singularity analysis and the inverse singu-
larity analysis while the second approach is used in the velocity
analysis and the uncertainty singularity analysis. In this way, the
above problems are solved in the most concise manner.

The results of this paper should be of great interest in the
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development of fast TPMs and high-performance parallel kine-
matic machines.
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Abstract: The Stewart-Gough, extendable strut type parallel 
kinematic mechanism (PKM) tends to lack sufficient dexterity 
over any sizeable workspace volume.  This is particularly 
true for applications such as robotic deburring and 
machining.  This paper describes the concept of micro/macro 
system integration of a PKM and a two-degree of freedom 
micro-manipulator.  The particular application focus is on 
automated deburring and finishing systems. 
 
1 Introduction 
 
Roots of development of parallel structures can be found in 
the late 1800’s when the first theoretical article on parallel 
structures was published by Maxwell in 1890.  In 1965, 
Stewart developed a 6-degree of freedom parallel structure 
for use as a flight stimulator called the ‘Stewart platform’.  
Since this time parallel kinematics is seen as a promising 
research area, with a wide range of applications.  A recent 
survey shows PKM’s used in robotics, measuring machines, 
machine tools, positioning devices, and other special 
applications related to production.  Equipped with today’s 
fast computing devices, implementation of advanced 
controllers is also being achieved on PKM’s (Tönshoff, 
1998). 
 
However, at the onset of parallel kinematic mechanisms used 
as machine tools, great claims were made regarding their 
dexterity, stiffness and range of motion.  Many of these 
claims were an over statement of the PKM designs 
capabilities (Fassi and Wiens, 2000).  Inspite of recent 
developments, PKM’s have some inherent drawbacks like 
low work volume to size ratio, limited dexterity and 
shrinking of work volume with tilt in platform angles, see 

Figure 1.  Furthermore, PKMs generally do not have ability 
for continuous rotation about its platform’s vertical axis.  
These limitations become a particular problem for 
applications such as finishing and deburring which require 
controlled forces normal to an edge or surface contour.  A 
limited number of PKM’s have been developed for such 
applications, e.g. 3 dof Tricept PKM with deburring head 
attached and shoe deburring PKM (Molinari-Tosatti, et al., 
2000).  To overcome these drawbacks, the University of 
Florida System Automation and Mobility in Manufacturing 
(SAMM) Laboratory has designed a 2-degree of freedom 
micro -manipulator system operating under hybrid controller.  
This paper presents the 2-degree of freedom micro-
manipulator as a subsystem of a micro/macro parallel 
kinematic mechanism as a new approach for increasing the 
dexterity of PKM’s therefore, providing a vectorized 
rotational dexterity for finishing complex shapes and 
contours, see Figure 2. 
 

2 Background 
 
Deburring operations are expensive and increase the cost of 
manufacturing.  Burrs are sharp and relatively small 

 Horizontal Platform                Platform Tilted 15 degrees 
 

Figure 1.  Workspace Reduction with Dexterity 
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projections that form along the edges on the work piece that 
is machined or stamped.  In most cases, these burrs must be 
removed for improved product/system performance, safety, 
cost, ease of assembly, elimination of stress risers, proper 
tolerancing, appearance, etc. 
 

 
 
 

(a) Side View 
 

 
 

(b) Final Assembly 
 
Figure 2.  UF-SAMM Laboratory Micro/Macro Automated 

PKM Finishing System 
 

In manual deburring a person moves a deburring knife/file or 
a high-speed cutting tool along the desired edges of the work 
piece, maintaining a constant normal force on the tool.  This 
process is time consuming and involves risk of part rejection, 
especially in cases of complex and thin walled sections.  Due 
to repetitive task injuries and the hostile environment 

associated with manual deburring, corporations also suffer 
from large turnover rates.  This has promoted the increased 
interest in automatic deburring and chamfering machines, as 
seen during the past decade. 
 
Existing robots/machine tools typically operate as positioning 
devices, moving a cutter through a programmed trajectory. 
They generally lack the ability to control proper direction and 
force with respect to burr variation.  Attaching an active 
micro -manipulator as end-effector tooling has been found to 
be effective in providing existing systems controlled 
compliance in the direction of burr variation.  However for 
varying contours, the positioning device has to change its 
orientation continuously to maintain the constant normal 
force along the desired trajectory.  This can result in long 
cycle time and tedious CNC/robot programming.  The 
SAMM Laboratory’s macro/micro system eliminates the 
orientation issues through controlled vectorized chamfering 
and deburring forces.  In addition, this system uses event-
driven control yielding tighter toleranced edges and surfaces 
and a reduction in the need for multiple passes for finishing. 
 
3 New Micro/Macro PKM Design 
 
The SAMM Laboratory PKM is divided into two-sub 
systems:  Nominal Positioning Device (PKM) and Force 
Control Device (Two DOF). 
 
3.1 PKM 
 
The PKM of the SAMM Laboratory is a modular machine 
that can be easily assembled and dismantled.  It is capable of 
producing sufficient forces needed for moving the finishing 
component while performing chamfering and deburring 
operations (refer to Figures 2 and 3).  Design criteria for the 
PKM were it should be small to medium-size, maintain 
structural rigidity, and produce enough force to carry out 
finishing operation.  The SAMM Laboratory’s PKM adheres 
to a special 6-6 layout patented by Griffis and Duffy (1989). 
To accommodate cost restrictions, the PKM was designed 
using as many off the shelf components as possible.  This 
PKM has limited rotation about its platform’s vertical axes, 
and at a cost in workspace volume. 
 
The main components of the PKM are a base, moving 
platform and six struts.  Each strut consists of a telescopic 
cylinder.  To adjust the length of the struts, one cylinder 
slides inside the other and this is achieved and controlled 
using a servomotor and ball screw arrangement.  Selection, 
arrangement and alignment of the base and moving platform 
joints connecting the struts was made so that the maximum 
range of motion within the joints is achieved, full range of 
actuated motion is not restricted due to a joint limit, and each 
joint has sufficient static and dynamic load capacity.  Six 
degrees of freedom of the moving platform is achieved 
through each of the six struts having a six degree of freedom 
kinematic chain of a spherical, prismatic and Hooke joint 

Vectorized  
Normal Force 
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pair.  A ball spline is used to form the prismatic pair.  The 
base platform joints are hollowed spherical bearings, through 
which passes the ball screw/motor shaft.  The joints 
connecting the struts to the moving platform are designed to 
serve two purposes.  First is to allow angular motion while 
transmitting the linear strut forces and motion to platform and 
second is to provide a means to perform minor adjustments to 
the moving platform upon PKM setup.  To accommodate 
both these features, simple rod ends are used. 
 

 
 

Figure 3.  UF-SAMM Parallel Kinematic Mechanism 
 
3.2 Two Degree of Freedom 
 
The two degree of freedom micro-manipulator is designed to 
be attached to the moving platform of the PKM forming an 
automated finishing system (refer to Figures 2 and 4).  It 
controls both normal force so as to maintain constant chamfer 
depth and controls tangential position of spindle along the 
feed direction.  Due to its compliance in two directions, the 
application of this micro-manipulator is very effective for 
chamfering and deburring of parts with geometries in which 
the edge contours vary two dimensionally in the plane of 
movement of positioning device.  That is providing a 
vectorized normal force vector.  Machines equipped with this 
micro -manipulator do not have to change its orientation (e.g., 
minimizes robotic wrist/platform rotation) to maintain 
desired normal force.  Hence, greatly saves cycle time and 
eliminates tedious programming.  
 
The main components of this manipulator are two VCA’s 
(Voice Coil Actuator), two LVDT’s, two single axis force 
tranducers, and spindle mounting bracket.  The two VCA’s 
are aligned along x and y directions at 90 degrees to each 
other.  The spindle mounting bracket is attached to VCA -X 
and VCA -Y through a ball spline, ball nut and a force 
transducer.  The assembly is done in such a way that 
movement of the VCA -X does not reflect the applied VCA -X 
force on VCA-Y and vise versa.  Two cross-slides are 
provided to prevent moments on the force transducers.  The 

VCA assembly base can be mounted on PKM or a stationary 
frame.   

 
 

 
Figure 4.  UF-SAMM Micro-Manipulator 

 
3.3 Macro/Micro Assembly 
 
The assembly of the macro/micro components allow for an 
easy deburring operation.  The micro-manipulator has a high-
speed spindle mounted at the center of its platform.  
Depending on the force experienced by the spindle, the 
controller reacts in real-time to maintain a desired normal 
force.  If no burrs are exp erienced, then this force is constant.  
Figure 2 shows a 3-D model of the assembled machine with 
the cutter in contact with a sample part. 
 
The micro-manipulator assembly is located so that the 
spindle is also at the center of the platform of the PKM.  The 
PKM provides the motion along the edges of the part where 
the chamfering and deburring operation is required, see 
Figure 2.  The PKM’s motion does not need to take into 
account the presence and or shape of a burr in the plane of 
motion because those are already dealt with in real-time by 
the micro-manipulator controller.  So theoretically any shape 
or contour within the range of the PKM can be submitted to a 
deburring operation by simply deriving the proper nominal 
(ideal) path for the PKM. 
 
3.4  Control Syste m 
 
Around-the-arm force control is a method that is based on 
using the macro-manipulator (here PKM) for nominal 
positioning and motion only and a micro-manipulator for 
higher bandwidth force control (Proctor and Murphy, 1989;  
Whitney, 1987).  This method decouples the micro-
manipulator’s controller from the macro-manipulator’s 
controller.  The hybrid position/force control micro-
manipulator can be either mounted to a stationary base or on 
the macro-manipulator.  The micro-manipulator performs as 

Moving 

Platform 

Cross-Slides Spindle Mounting Bracket 

Ball Spline-Ball Nut 

Cutter 
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an auxiliary tool that adds additional axes of motion to the 
system.  Along these axes of motion, the required compliance 
for automated finishing tasks is provided. 
  
There are two methods used to implement around-the-arm 
force control:  passive and active.  Passive force control is an 
open loop control system with no mechanism to adjust for 
force errors.  The advantages of this micro-manipulator 
system are its simplicity and the cost.  Closing the force loop, 
the active around-the-arm control maintains a constant 
normal force inspite of burr variations.  Typically these 
micro -manipulators have been instrumented to sense the 
position, enabling these constant force devices to 
automatically determine the tool wear, part misalignment, 
and sudden process changes due to the presence of burrs. 
 
The UF-SAMM PKM uses the active around-the-arm control 
approach.  The PKM’s controller is the National Institute of 
Standards and Technology Enhanced Motion Controller 
modified to accommodate six axis non-orthogonal systems, 
and running under Real-time Linux.  The micro-manipulator 
is an event-driven hybrid position/force controller.  This 
controller uses a process based logic module to 
instantaneously modify the constant force reference value 
(Fn) in accordance to sensed burr variations.  Thus yielding a 
higher precision edge and a reduction in the need for multiple 
deburring passes  (Wiens, Musuner and Walker, 1997).  
 
In the design of the event-driven hybrid controller, the VCA-
X and VCA-Y are orthogonal to each other but are in general 
not aligned with the normal and tangent directions relative to 
the cutter’s trajectory along the part’s edge.  The PKM 
provides the nominal motion of the cutter such that the VCA-
X and VCA-Y frame is in a parallel plane to the normal and 
tangent frame of the part’s edge.  Ideally, the origins of these 
two frames will coincide.  Referring to Figure 5, the micro-
manipulator’s controller takes measured LVDT signals in X 
and Y directions and force transducer signals and converts 
them to normal and tangent components relative to the part’s 
edge (directions as defined by the ideal part contour and 
process plan).  The converted signals are then fed into 
corresponding comparator and controller (position and force) 
followed by another transformation back to the VCA axes 
directions.  The signals from both the position and force 
controller are then combined generating the appropriate 
VCA-X and VCA-Y input commands.  The hybrid 
position/force controller is designed in such way that 
tangential position is controlled to keep spindle at center of 
VCA stroke while at the same time maintaining the normal 
force required to maintain the desired chamfer depth. This 
controller also uses the position feedback to detect the 
presence of burrs and part misalignment.  If a burr is 
detected, the process plan’s normal force is adjusted using a 
process based “Logic Module”.  Without this module the 
finished edge would be a replica of the original surface prior 
to the deburring and chamfering operations, i.e., have the 
same waviness of the original edge.  If the burrs are small 

than the edge would be within tolerance with the use of the 
appropriate normal force.  More aggressive action is required 
if this is not the case, e.g. the ‘logic module’ is needed. 
 
3.5  Results 
 
Figures shows simulation results achieved on hole 
processing.  The VCA rotates the force vector electronically 
to follow the normal to the work piece edge and thus 
maintain the constant desired chamfer depth. Experimental 
results are very close to theoretical values, see Figures 6 and 
7.  This is easiest to visualize by comparing the VCA forces 
in x and y to the normal when either the x or y force 
component is zero.  Figures 6 shows the experimental result 
of the force vectorization done by the micro-manipulator.  In 
this particular case, the movement along the edges was 
simulated using a 2dof machine (U500).  Figure 7 shows the 
same force vectorization done by the micro/macro 
manipulator final assembly.  In Figure 7, the error observed 
between the simulated and the experimental can be attributed 
to an observed increase in friction in the ball screw, ball nut 
and counter balance slides.  
 
4 Conclusions 
 
In conclusion, the integration of the two devices into one 
macro/micro machine takes advantage of the two 
manipulators while canceling their drawbacks.  For example 
the small movements in 2-D by the 2 degree of freedom 
micro -manipulator are compensated by an ability of the PKM 
to follow 3-D nominal paths through out its work volume; 
and the relative low precision of the PKM is compensated by 
the ability of the micro-manipulator to apply greater 
precision with its hybrid position/force control.  Combining 
these 2 manipulators and the process based, event-driven 
controller results in a new machine that is superb for low cost 
and high precision deburring operations. 
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Figure 6, Experimental Results on U500 
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Abstract: Gravity compensation in parallel mechanisms by 
mechanical means bears great advantages in system 
behavior, including increased bandwidth and accuracy, and 
reduced energy consumption, overall weight, and friction. As 
not many statically balanced parallel mechanisms exist, this 
short paper aims to give an overview of possible approaches 
and proposes possible research directions. 
 
 
1 Introduction 
 
This paper discusses some fundamental questions and 
possible research directions regarding the application of static 
balance in parallel mechanisms.  

The most striking feature of statically balanced 
mechanisms is their static equilibrium in all possible 
configurations, also in case no friction is present. This 
implies that no operating effort, apart from acceleration and 
deceleration, is needed to move the system from one 
configuration to another. Consequently, a mechanism with 
perfect static balance has constant potential energy 
throughout its range of motion. To achieve static balance in a 
pre-existing non-balanced mechanism, a balancing 
mechanism including energy storage devices needs to be 
added to complement the total system's potential energy to a 
constant value. In principle, any conservative force can be 
statically balanced (Herder, 2001).  

A well-known application of static balancing is the 
compensation of gravity forces. Gravity compensation yields 
many advantages, including reduced energy consumption, 
smaller actuators, improved performance and inherent safety 
in case of power failure. An overview of literature on static 
balancing using counterweights, static balancing using 
springs, dynamic balancing using counterweights which 

implies static balancing, and gravity compensation in 
robotics is given in Herder (2001). 

Also in the field of parallel mechanisms gravity 
compensation is receiving increasing attention, as realization 
of the advantages of static balancing may increase their use. 
The first statically balanced parallel mechanisms are 
currently under construction at Laval University 
(http://wwwrobot. gmc.ulaval.ca). Associated references 
include Jean and Gosselin (1996), Gosselin (1999), Gosselin 
and Wang (2000), and Ebert-Uphoff et al. (2000). Specific 
advantages are mentioned for a parallel haptic master device, 
where mechanical counterbalancing would reduce the 
compexity and time consumption of the controller, which 
improves accuracy of force feedback (Birglen, 2002). In 
addition it would also increase its mechanical performance. 
Also in cable-actuated parallel mechanisms the use of springs 
is proposed to decrease the effect of gravity in static mode or 
to contribute to the efforts of the cables in the directions 
where maximum accelerations are needed (Barette and 
Gosselin, 2000).  

This paper focuses on the application of gravity 
compensation in parallel mechanisms. First, an inventory of 
fundamental questions is made. Without claiming 
completeness, it turns out that important issues are readily 
encountered. Subsequently, these issues are addressed in 
some detail.  
 
2 Inventory 
 
From the definition of statically balanced systems it is seen 
that any gravity balancer must apply forces to the system to 
be balanced, in this case the moving platform of the parallel 
mechanism. Principally, the balancing system must provide 
some connection between the (center of mass of the) moving 
platform and Earth, generally in the form of one or more 
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linkage chains between the moving platform and the fixed 
ground. Furthermore, the balancing system must include 
potential energy storage devices. These observations lead to 
several questions. A first question to be answered is whether 
to use the balancing system for actuation or not. A second 
question is which kind of energy stores to use. A third 
associated question concerns the number of energy storage 
elements.  

In addition to gravity compensation, static balancing may 
also be useful in compliant parallel mechanisms, such as the 
one by Canfield et al. (2001). Compliant mechanisms gain at 
least some of their mobility from the deflection of their 
flexible members rather than from movable joints only 
(Howell, 2001). To offset the elastic forces induced by these 
deformations, the addition of a static balancer may be 
advantageous (Herder and van den Berg, 2000).  

The questions posed above, together with some practical 
considerations will be briefly discussed in the following 
sections. 
 
3 Combination of actuation and balancing systems 
 
A gravity compensation mechanism can be integrated with 
the actuator legs of the platform or can be added as a separate 

system. An integrated compensation system will be defined 
as a compensation system which makes use of the actuation 
system's chains between the moving platform and ground, 
whereas a separate compensation system adds one or more 
chains between the moving platform and ground to those of 
the actuation system. A fully separate compensation system 
is passive, in that it contains no actuators, only passive 
(requiring no external energy) energy storage devices such as 
springs or counterweights.  

Figure 1 shows two versions of a planar three-degrees-of-
freedom parallel linkage with gravity compensation. The 
system in figure 1a uses one Anglepoise-type gravity 
balancer (Carwardine, 1935) which applies at the center of 
mass of the moving platform. This ensures perfect gravity 
compensation (for proof see Herder, 2001). For the actuation 
of the platform, the original system (in this example the 
linear actuators) are retained. Therefore, the compensation 
system is fully separate. In the system of figure 1b, two 
Anglepoise-type gravity balancers are used as legs which 
perfectly balance the moving platform against gravity (proof 
of this statement is straightforward if it is realized that each 
leg carries half of the platform mass, see also Ebert-Uphoff et 
al., 2000, who provide a more general proof). Each leg, as a 
separate system, has two degrees of freedom. If, in the total 
system, actuators are placed in three of the four joints 
associated with these degrees of freedom, the moving 
platform can be fully controlled using the legs of the 
balancing system. Therefore, this system has an integrated 
compensation system.  

Most gravity balancers designed to date have revolute 
joints. This is due to the fact that both a mass-lever element 
and a spring-lever element incorporating a zero-free-length 
spring (figure 2) are constant force generators (Nathan, 
1985). The technology for many of these systems is based on 
the equipoising mechanisms designed by George Carwardine 
(1932, 1935). Many parallel mechanisms, however, are 
equipped with linear actuators, for which much less balancers 
have been developed. In these cases the equipoised lazy-
tongs mechanism by Carwardine (1938) and the similar 
parallel-link equilibrator by Streit an Shin (1993) can be 
used, but these are not very practical. Cable-driven parallel 

 
 
 
 
 
 
 
 
 

(a)          (b) 
 
Figure 2 Two constant force mechanisms, both in use as 
gravity compensation mechanism: (a) mass-lever element, 
(b) spring-lever element with zero-free-length spring.  
 
 

 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 
Figure 1 Two planar 3DoF parallel mechanisms with 
gravity compensation: (a) separate compensation system, 
(b) integrated compensation system. 
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mechanisms require yet other balancers. An integrated 
compensation system would be particularly desirable to not 
reduce their large workspace. The design of integrated 
balancing systems for parallel mechanisms with linear 
actuators and cable-driven parallel mechanisms seems to be 
in its early infancy.  
 
4 Energy storage devices 
 
Any source of conservative force qualifies for use as 
potential energy storage device. In practice, the choice is 
often limited to masses (counterweights) or springs. A 
mechanism that is gravity balanced using counterweights has 
the advantage that it has become insensitive for its orientation 
with respect to the gravity accerelation vector. Advantages of 
the use of springs are that the additional mass and inertia 
associated with counterweights is avoided, which results in 
increased accelerations. Several authors support this 
statement (references to general robotics are included in 
Herder (2001), while references to parallel mechanisms 
include Gosselin, 1999, and Gosselin and Wang, 2000). 

Although perhaps intuitively less than a counterweight, 
the mass of springs is not always negligible. This section will 
show that under certain conditions a spring may actually be 
heavier than a counterweight.  

The energy Umax that can be stored in a prismatic beam 
loaded in pure tension or compression equals: 
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FdxU            (1) 

where F is the axial force acting on the prismatic body (the 
spring), and x is the elongation. Assuming linear elastic 
material behavior, Hooke's law applies which yields: 
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where L is the (initial) length of the spring, A its (initial) 
cross-section, and E is Young's modulus. Substitution of 
equation (2) into equation (1) yields: 
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where V is the (initial) volume of the spring. Thus, the energy 
stored in the spring is proportional with its material volume. 
The elastic energy per volume can be expressed as a function 
of the material properties �  (yield strength) and E (Young's 
modulus), and a type factor � : 

EV
U 2

max �

��            (4) 

For axially loaded prismatic beams, the type factor � =1/2, 
according to equation 3. For other springs, this factor is less. 
Cool (1992) provides a table of type factors (table 1). 
 
 
Spring type Type factor 
Prismatic beam with 
pure tension or 
compression load 

 
1/2 

Rectangular cantilever 
with perpendicular 
load 

 
1/18 

Triangular cantilever 
with perpendicular 
load 

 
1/6 

Helical tension or 
compression spring 
with circular wire 
cross section 

 
1/4 

Coiled torsion spring 
with circular wire 
cross section 

 
1/8 

Spiral spring with 
rectangular wire cross 
section 

 

 
1/6 

 
Table 1 Type factors (coefficient relating maximum elastic 
energy to material properties of a spring) for some springs. 
 
 

 Let for example a weight of 100 kg be statically balanced 
by a helical extension spring, as in figure 2b. If the arm 
length ro is 1 m (vertical displacement h of the mass 2 m), 
than at least a potential energy of Um = mgh = 2*981 Nm 
needs to be stored in the spring. If the spring is manufactured 
out of steel (� =1200 MN/m2, E=210 GN/m2), then the 
material volume is: 

314.1
)92.1(

92109812 2
4
12max ����� e

e
eEUV

��

 (5) 

With a density of � =7800 kg/m3 this example yields a 
spring mass of 9 kg or around 10% of the payload. This is 
much less than the mass of a counterweight, which, 
depending on the lever arm length (usually smaller than the 
arm of the mass to be balanced) may be factors greater than 
the payload. In this example, a springs seems the favorable 
option, however, the outcome of the comparison is dependent 
on the circumstances. 

The outcome of the comparison of counterweight and 
spring is, among other factors, depending on the scale of the 
application. The ratio of energy storage to mass of a 
counterweight is given by: 

gh
m

mgh
m
U

cw

cw
��           (6) 

This expression implies that in case all of the geometry is 
scaled by a scaling factor Sl (being equal to the ratio of scaled 
length measure to original length measure), then the scaling 
factor of energy storage to mass of a counterweight is equal 
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to the geometric scaling factor Sl. The ratio of energy storage 
to mass of a spring, using equation (4), is given by: 
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�
�
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�
�
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��         (7) 

This expression implies that the scaling factor of energy 
storage to mass of a spring is unity, in other words that the 
ratio of energy storage to mass of a spring is independent of 
the geometric scaling factor. This result indicates that as the 
geometric scale increases, the ratio of stored energy over 
mass increases (which is desirable) for counterweights, while 
it remains constant for springs. In this case there is a point 
where the counterweight becomes lighter than the 
compensation spring. It is interesting to locate this break-
even point, and investigate other criteria (such as the size of 
the lever arms) affecting the choice. In the example the lever 
arm of the counterweight was selected half as long as the 
lever arm of the mass to be balanced. Consequently, the mass 
of the counterweight in the original situation is 200 kg. For 
this example, figure 3 suggests the relation between the 
scaling factor and the mass of the energy storage device. The 
diagram shows that a counterweight becomes lighter when 
the configuration is scaled up by a factor greater than 22. 

Finally, it is noted that the zero-free-length spring 
behavior that is often required is not easily obtained. Either 
the initial tension of the spring itself should be increased, or a 
special mechanism is required, such as the pulley and string 
(Herder, 2001). Special mechanisms may increase friction, 
which is highly undesirable for instance in motion simulators. 
To circumvent these problems, it is worthwhile to investigate 

design methods for compensation mechanisms incorporating 
normal springs, to investigate low-friction mechanisms, and 
to investigate methods to reduce loading of joints or even 
eliminate joints themselves. Some initial efforts in these 
directions are included in Herder (2001) and also in Te Riele 
and Herder (2001). 
 
5 Number of potential energy storage devices 
 
A gravity compensation device may need as many degrees of 
freedom as the mechanism to be balanced to accommodate its 
motion, but when the potential energy of the center of mass 
of the moving platform is considered (and the masses of the 
legs are neglected), essentially the only degree of freedom of 
concern for the balancing energy storage device is its vertical 
movement. Therefore, one energy storage device should be 
sufficient for the static balancing of this mass. It has been 
suggested that the number of energy storage devices should 
equal the degrees of freedom of the mechanism (Hilpert, 
1968), but in fact there is no straightforward relation between 
the degrees of freedom of a linkage and the required number 
of energy storage devices.  

In figure 4, a solution for the six-degree-of-freedom static 
balancing of a mass by a single spring is suggested. It 
consists of a ball which can slide an spin without friction on a 
horizontal platform. The platform can move up and down 
while being suspended by a spring mechanism providing 
static balance for the vertical movement. Clearly, this is not a 
practical mechanism, but it raises the challenge of reducing 
the number of springs. 
  Currently, parallel mechanisms having an integrated 
compensation system exist with six degrees of freedom and 
six springs (Gosselin, 1999). One balancing system has been 
reported previously (Herder and Tuijthof, 2000; Herder 
2001) which may well be applied as separate compensation 
system in a six-degrees-of-freedom parallel mechanism with 
linear actuators. This system, called a general suspension 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 3 Relation between the scaling factor and the mass 
of the energy storage device for the example in the text. The 
thin line corresponds with the compensation spring, the thick 
line corresponds with the counterweight. In this case the 
break-even point occurs at a scaling factor of 22. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4 Six-degrees-of-freedom gravity compensation 
mechanism incorporating one zero-free-length spring. 
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unit, is shown in figure 5. From a potential energy 
perspective, this mechanism is essentially equal to the gravity 
balancer in figure 2b. However, the multiple-parallelogram 
mechanism provides additional degrees of freedom, which 
are very useful when the center of mass of the body to be 
suspended is not accessible for cardanic suspension. The 
addition of the rectangular link in figure 5b (for convenience 
shown in the plane of drawing, however the plane of the 
rectangle is to make a considerable angle with the plane of 
the rest of the mechanism to allow for sufficient x-, y-, and z-
translation). 

As has become apparent, there is scope for conceptional 
design improvements in several directions. Other interesting 
directions include the extension of the work by Agrawal et al. 
(2001), who use auxiliary parallelograms to trace the center 
of mass of series chains, a technique which may well work in 
parallel mechanisms too. 
 
7 Conclusion 
This paper has made an inventory of some fundamental 
questions and possible research directions regarding the 
application of static balance in parallel mechanisms. 
Primarily gravity compensation was considered, but also the 

compensation of the elastic forces in compliant parallel 
mechanisms was mentioned. The issues of separate or 
integrated compensation, the kind and number of energy 
storage devices, their weight as a function of the geometric 
scale, and the conceptional design of statically balanced 
parallel mechanisms were addressed in some detail. 
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Nomenclature 
a = distance between fixed spring attachment and pivot 
A = area 
E = Young's Modulus 
F = force 
g = acceleration of gravity 
k  = stiffness 
L = length 
m = mass 
r = link length 
S = scaling factor 
U = potential energy 
V = volume 
x = displacement 
� = type factor 
� = density 
� = yield strength 
 
References 
Agrawal, S. K., Gardner, G., Pledgie, S., 2001, "Design and 

fabrication of an active gravity balanced planar 
mechanism using auxiliary parallelograms, Journal of 
Mechanical Design, Vol. 123, p525-528. 

 
Birglen, L., 2002, "Haptic devices based on parallel 

mechanisms, state of the art", http://parallemic.org/ 
reviews/review003p.html. 

 
Barette, G., Gosselin, C. M., 2000, "Kinematic analysis and 

design of planar parllel machanisms acutated with 
cables", Proc. of the 2000 ASME Design engineering 
Technical Conferences, DETC2000/MECH-14091. 

 
Canfield S. L., Beard J. W., Parsons, R. D., Lobontiu, N., 

Paine, M., Paine, J., 2001, "Development of parallel 
architecture spatial compliant manipulators", Proc. of the 
2001 ASME Design engineering Technical Conferences, 
DETC2001/DAC-21033. 

 
Carwardine, G., 1932, "Improvements in elastic force 

mechanisms", UK Patent 379.680, Specifications of 
Inventions, Vol. 2729, Patent Office Sale Branch, London. 

 
Carwardine, G., 1935, "Improvements in equipoising 

mechanism", UK Patent 433.617, Specifications of 
Inventions, Vol. 3337, Patent Office Sale Branch, London. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 General suspension unit: (a, top) parallelogram 
mechanism, (b, bottom) addition of a rectangular segment 
(not in the plane of drawing) to obtain three independent 
translations. 
 
 

44



 

 
Carwardine, G., 1938, "Improvements in and relating to elastic 

force and equipoising mechanisms", UK Patent 489.547, 
Specifications of Inventions, Vol. 3896, Patent Office Sale 
Branch, London. 

 
Cool J. C., 1992, "Mechanical systems", (in Dutch), DUM, 

Delft, The Netherlands. 
 
Ebert-Uphoff, I., Gosselin, C. M., Laliberté, T., 2000, "Static 

balancing of spatial parallel platform mechanisms – 
revisited", Journal of Mechanical Design, 122(1)43/51. 

 
Gosselin CM (1999) Static balancing of spherical 3-dof 

parallel mechanisms and manipulators, The International 
Journal of Robotics Research, 18(8)819/29. 

 
Gosselin, C. M., Wang, J., 2000, "Static balancing of spatial 

six-degree-of-freedom parallel mechanisms with revolute 
actuators", Journal of Robotic Systems, 17(3)159/70. 

 
Herder, J. L., van den Berg, F. P. A., 2000, "Statically 

balanced compliant mechanisms (SBCM's), an example and 
prospects, Proc. ASME DETC 26th Biennial Mechanisms 
and Robotics Conference, DETC2000/MECH-14144. 

 

Herder, J. L., 2001, "Energy-free systems; theory, conception 
and design of statically balanced spring mechanisms", 
PhD-Thesis, Delft University of Technology, The 
Netherlands. 

 
Hilpert H (1968) Weight balancing of precision mechanical 

instruments, Jnl Mechanisms, (3)289/302. 
 
Howell, L. L., 2001, "Compliant mechanisms", John Wiley & 

Sons, Inc., New York. 
 
Jean, M., Gosselin, C. M., 1996, "Static balancing of planar 

parallel manipulators", Proceedings of the IEEE 
International Conference on Robotics and Automation, 
Minneapolis, Minnesota, USA, p3732/7. 

 
Nathan, R. H., 1985 "A constant force generating 

mechanism", Journal of Mechanisms, Transmissions, and 
Automation in Design, 107(12)508/12. 

 
Riele FLS te, Herder JL (2001) Perfect static balance with 

normal springs, Proceedings ASME Design Engineering 
Technical Conferences, Sept 9-12, Pittsburgh, 
Pennsylvania, paper number DETC2001/DAC21096. 

 
Streit, D. A., Shin, E., 1993, "Equilibrators for planar 

linkages", Journal of Mechanical Design, 115(3)604/11. 
 
 

45



Proceedings of the WORKSHOP on 
Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators 

October 3�4, 2002, Quebec City, Quebec, Canada 
Clément M. Gosselin and Imme Ebert-Uphoff, editors 

 
 
 
 
 

Velocity Performance Indexes for Parallel Mechanisms with Actuation Redundancy 
 
 

SEBASTIEN KRUT, OLIVIER COMPANY, FRANÇOIS PIERROT 
LIRMM, UMR 5506 

CNRS - Université Montpellier II 
161, rue Ada 

34392 Montpellier Cedex 5, France 
<krut, company, pierrot>@lirmm.fr 

 
 
 
Abstract: This paper analyses the velocity isotropy of Parallel 
Mechanism with Actuation Redundancy. The limits of classical 
indexes based on the Jacobean matrix condition number is 
shown. Two new indexes are proposed, and the ways to 
computed them efficiently are given. 

In section 2, some basic issues related to condition number are 
firstly recalled and one of its important limitations is pointed 
out when considering PMAR: this index does not provide a 
proper measure of kinematic isotropy. Section 3 is dedicated to 
the definition of a new index which is consistent with the 
classical condition number since it refers to measures made on 
a velocity ellipsoid; however this ellipsoid is rather different 
from the usual one. Two different algorithms are given: one is 
based on derivations made in joint space, and the other one on 
derivations made in operational space. Section 4 is a discussion 
about different possible indexes and the relevant algorithms: 
they are based on an analysis of the velocity polytop. 

1 Introduction 

When designing a machine, optimization processes are often 
run aiming at pointing out the machine of �best performances�. 
For this task, quality indexes are used. According to the  
machine purpose, one index is selected, and that will lead to the 
machine which provides the best score, i.e. which offers the 
best index value. Actually, optimization is often more delicate 
and often ends with a compromise of several abilities because 
of the antagonist evolution of various abilities that are essential 
to the correct behavior of the mechanism,. 

 
2 Condition number and its application to PMAR 

In the following a mechanism is characterized by its inverse 
Jacobean, , which links joints velocities  to operational 
speed, , as follows

mJ q&
x& 1: Among all the quality indexes, the Jacobean matrix condition 

number is often used; it is supposed to characterize the 
velocities isotropy of the mechanism. Due to the forces-
velocities duality, it is also said to be representative of forces 
isotropy. The mathematical basics which are the foundations of 
the isotropy concept for robots have been first defined for serial 
robots [1][2], and it turns out that a deeper analysis is required 
when considering more complex mechanisms. 

 xJq m && =  (1)
 

2.1 Is a two-dof X-Y table an isotropic device? 

In order to illustrate the following discussion, let us consider 
the simple case of a serial 2-dof X-Y table in fig. 1. 

This paper aims at offering such an analysis of isotropy concept 
when considering PMAR (Parallel Mechanisms with Actuation 
Redundancy), i.e. mechanisms where a given operational force 
does not correspond to a unique set of joint forces. This type of 
redundancy differs from the kinematic redundancy case where 
a given operational velocity does not correspond to a unique set 
of joint velocities. It has been shown [3][4] that actuation 
redundancy may help to overcome over-mobility singularities, 
and it seems important to offer tools to correctly analyze the 
velocity performances of such machines. 

For this mechanism,  is the identity matrix, and for the 
robotics community, this mechanism is often considered as 
perfectly isotropic; that is to say, velocity performances are said 
to be identical in all directions of the operational space. This is 
clearly not true, as shown in fig. 2 and fig. 3. 

mJ

                                                           
1 the notation x  does not mean it is the derivative of operational position 
vector with respect to time. 

&
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2.2 Analysis of a basic non-redundant parallel mechanism 
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Nacelle

2q
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The simple parallel mechanism in fig. 4 is made of two 
connecting rods linking two identical linear motors to the 
nacelle. Obviously, the nacelle can move in translation along 
two directions. 
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r Nacelle
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fig. 1 � X-Y table geometry 
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fig. 4 � V shape mechanism geometry 

The inverse Jacobean matrix  of this mechanism in this 
centered position is the same as for the X-Y table (joint and 
operational reachable domains are those represented in fig. 2 
and fig. 3). When the mechanism is not more in its centered 
position, the inverse Jacobean matrix is not equal to the identity 
matrix anymore; so if the reachable joint domain remains the 
same, the reachable operational domain becomes a polytop (see 
fig. 5). 

mJ

fig. 2 � Reachable joint space of the X-Y table 
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 fig. 3 � Reachable operational space of the X-Y table 
fig. 5 � Reachable operational space for a simple parallel 

mechanisms. Reachable velocity joint is actually a square defined by 
maxqqi && ≤ . This square remains a square once mapped in the 

operational space, using matrix . Therefore the highest 

velocity reachable by the nacelle is 

1
mJ −

maxmax 2 q&×=v . Such a 
speed is only accessible for a very specific motion direction. 
Moreover,  is always reachable for all operational 

directions. Graphically, this results in the circle of radius  
inscribed in the square. This circle is the image of the joint 
space circle of radius q  by the linear mapping represented 

by matrix . Interestingly enough, even if this is not an 
isotropic device strictly speaking, designers often refer to the 
deformation of a velocity  joint space circle (or hyper-sphere 
for higher orders) by the Jacobean matrix to measure the 
�quality�  of velocity mapping in terms of isotropy� 

maxmin qv &=

&

1
mJ −

minv

max

The image of the joint circle is an ellipse inscribed in the 
polytop. This ellipse is entirely characterized by the SVD2 of 

; the SVD provides in particular the lengths of the ellipse�s 
axes. A usual isotropy index is derived as the ratio of extreme 
operational velocities:  and ; this index is a 
measure of the ellipse�s distortion. The lower the distortion is 
(index value close to 1), the more the ellipse tends towards the 
circle, considered as the �ideal case� from the isotropy point of 
view. 

mJ

max
ellipsev min

ellipsev

Rather than considering the ellipse, one could be interested 
in the more realistic polytop that may be analyzed in terms of 
ratio between the absolute maximal speed ( v ) and 
the maximum speed that the mechanism can reach in all 

max
ramparallelog

                                                           
2 Singular Value Decomposition 
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operational space directions ( ). The latter 
graphically corresponds to the radius of the largest circle 
inscribed in the operational polytop.  

min
ramparallelogv

xi
r

y

j
r Nacelle 

In this paper, discussions related to PMAR are made for 
both cases, velocity ellipsoid and velocity polytop; however, 
the usual inverse Jacobean matrix condition number cannot be 
used straightforward, as shown in the next section. 

2.3 A basic PMAR �  3 actuators / 2 dof 

Let us consider the PMAR in fig. 6., made up of three 
connecting rods and three identical linear actuators. Here, two 
actuators are colinear. 

 

 
fig. 6 � Geometry of a specific PMAR 

This mechanism produces in term of velocities the same 
effects that the former non-redundant parallel mechanism (fig. 
4). So, in this centered position, this mechanism is as isotropic 
from the velocity point of view as the previous mechanism or 
even the X-Y table; operational velocities explore the same 
field as previously: a square (fig. 3).  
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fig. 7 � Reachable operational space for this specific PMAR 

For this mechanism the inverse Jacobean matrix, , is 
given by: 

mJ
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� and its condition number is equal to 2 . Thus, the ratio 
between extreme singular values does not represent anymore 
the ratio of extreme dimensions of the ellipse of maximum 

surface inscribed in the operational polytop, since this ratio 
should be equal to 1. Indeed, the operational ellipse obtained 
using the SVD, has two half-axes which length are q  and max&

2/maxq&

=&xW

 as depicted in fig. 7. 

jq&≠

In different words, the usual isotropy index says such a 
machine is far from being isotropic, when a common sense 
analysis says it is as isotropic as an X-Y table. Indeed in such 
cases, the condition number may give a rough estimate of the 
anisotropy in force (in reality the machine maximum force 
along x is twice the maximum force along  y), but it does not 
represent anything related to velocity isotropy. 

As a matter of fact, for PMAR the �duality� between force 
and velocity does not hold anymore for this simple fact: a set of 
joint forces can be chosen freely within the actuators capacity 
boundaries, while the components of  the joint velocities vector 
must respect kinematic constraints and thus cannot be chosen 
freely. 

In order to be consistent with the interpretation of the 
condition number established for non-redundant mechanisms, 
the ellipse of larger surface inscribed into the operational 
polytop will be determined. Its characteristics, length of the 
largest and the smallest half-axis, will lead to a more 
significant isotropy index which can cope with PMAR.(section 
3). Moreover, the way to establish the extreme velocities 
related to the operational space polytop will be described as 
well (section 4). 

3 Construction of an isotropy index based on ellipses 

3.1 Preliminary remarks 

- To be simple, different domains of space will be named 
circle, ellipse, polytop, square, cube. One should keep in 
mind that those terms must be generalized when 
considering spaces whose dimensions are higher than 2 or 
3 (hyper-circle, hyper-ellipse, and so on). 

- Only a-dimensional problems are considered here. In other 
cases, weighting matrices,  and , can be used as 
follows [9]:  
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Weighting matrices help in managing issues such as: non- 
homogeneity (coexistence of linear and angular velocities), 
differences in actuators� performances ( ), 
differences in desired performances along various 
operational axes ( ). 
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- The next sub-sections are organized as follows: (i) in 
section 3.2 linear algebra tools are briefly recalled and the 
limits of their use for PMAR is pointed out; (ii) in section 
3.3, a way to compute the largest admissible ellipse 
included in the joint polytop and to map it into the 
operational space; (iii) in section 3.4 it is proven that the 
resulting ellipse is actually the largest one in the 
operational space. 

3.2 Analyze of the SVD for a redundant mechanism 

For illustration purpose the planar mechanism shown in fig. 8 
will be used here. It is a 3 actuators / 2 dof PMAR, which 
geometry is more general than the one in section 2.3. However, 
formulas will be established any type of joint and operational 
spaces, as long as they respect the following condition: 
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fig. 8 � Geometry of a typical parallel redundant mechanism 

 
The SVD of the inverse Jacobean matrix gives [5]: 

 T
m VSUJ = , (2)

where: 
-  is a  orthogonal matrix, representing a linear 

application in the operational space;  

TV nn×

-  is a rectangular matrix whose upper part includes the 
singular values of , 
S
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It characterizes the linear application that links a 
operational velocity vector to a joint velocity vector.  

-  is a  orthogonal matrix, representing a linear 
application in the joint space. The n first columns, vectors 

 ( n ) span the range of . The 
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n <U,,K m mJ nm −  
following columns correspond to the actuators velocities 

which can never be produced by a movement of the 
nacelle. They span the kernel of J .  
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fig. 9 � Graphical representation of  QUq && =

To be acceptable, i.e. to be admissible by the mechanism, a 
joint velocity vector must belongs to the range of ,. Let us 
note: 

mJ

 
{ }

nQQ ee &&
r

K
r

,,
1

 , a base for this type of vector; 
~ ~
Q&  ( n=)dim( ) , a column matrix representative of the 

joint velocity vector in this base;  
Q&

1S  , a matrix representing a mapping from the operational 
space to the restriction of the joint space to the range of :  
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The following equation links an admissible joint velocity 

vector to an operational velocity vector: 

 SVx 1
1& −=  (3)

The restriction of the unit sphere to the range of J  is a 
circle of radius 1 (cf. fig. 10). This circle if transformed into an 
ellipse in the operational space; the ellipse�s half-axes length 
are 

m

{ }nii ,,1,/1 K∈σ . The condition number of  is an 
image of this ellipse�s shape. 

mJ

 
Obviously, the entire acceptable joint space is not a sphere 

but a cube defined by the following inequalities: 
{ }miqi ,,11 & ∈≤≤−  
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fig. 10 � Intersection of the unit cube and the unit sphere with the 

range of  mJ

The restriction of this cube to the range of J  (cf. fig. 10) 
is a polygon, or polytop. All acceptable motors velocities 
vectors must be located inside this polygon. In fig. 11, the 
circle and the polygon are depicted. It is to be noted that the 
circle could be larger and still acceptable because it is not 
tangent with the polygon. That implies that the opposite of the 
singular values are not enlightening maximum speeds which 
can be reached by the nacelle. 

m

fig. 13 � Operational velocities for a PMAR 

 
Case study. 

 
The complete situation is depicted in fig. 14 for a given 
geometry [120° between each actuators, length of arms = 100, 
position of the nacelle (-40,-10)].  
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fig. 11 � Joint polygon and circle 

For a non-redundant mechanism, the joint circle and the 
operational ellipse are the greatest ellipses respectively 
included into the joint square and the operational polytop; for a 
PMAR, this is no more the case. 

 
It is proposed in this paper to determine the largest ellipse 

included in the operational polytop. The ratio of the extreme 
half-axis of this ellipse can be a really significant isotropy 
index.  fig. 14 � Operational velocity situation centered on the nacelle.  

It is proposed as well to consider another index constituted 
from the ratio between the extreme velocities measured at the 
polytop level,  and v . max

polytopv min
polytop

The obtained results are given in table 1. Clearly the 
modified operational ellipse is a better representation of the 
machine velocity capability than the ellipse associated with the 
restriction of joint space unit sphere (operational ellipse in fig. 
14). 

Xe &

rYe &

r

X&

Y& Modified ellipse
 in joint space

 

 
)( mJcond  1.49 

Largest ellipse index 1.08 
max

ellipsemodifiedv  max35.1 q&×  
min

ellipsemodifiedv  max97.0 q&×  

Polytop index 1.48 
table 1 � Results and indexes values 

The following sub-sections are dedicated to the derivation of 
both indexes in a general case. 

fig. 12 � Joint  velocities for a PMAR 
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 MRM ~
=′ , (6)3.3 Search of the operational ellipse of greatest surface 

included into the admissible operational polytop 
with R  an orthogonal matrix. 
 This search can be made: 

- by reasoning in joint space, i.e. finding the largest ellipse 
in joint space and then mapping it into the operational 
space (section 3.3.1); 
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Expansion Orientation

fig. 15 � From the unitary circle to the largest ellipse 

- by reasoning directly in the operational space (section 
3.3.2). 

 
3.3.1 Reasoning in joint space 

The application which transforms the joint unitary circle of the 
subspace image of  into the joint ellipse of largest surface 
included in the joint polytop will be determined here. This 
ellipse, once mapped into the operational space by the linear 
application of matrix  gives the ellipse of largest surface 
included into the operational polytop (this point will be proved 
in section 3.3.2). The conditions which must be respected by 
the joint ellipse to be located inside the joint polytop will be 
firstly presented; then the conditions to find the largest ellipse 
will be formulated as an optimization problem. 

mJ

1S 1−

 
Expansion and orientation are combined to get the largest 
ellipse. To be included in the joint polytop, the ellipse must 
verify:  
- the ellipse is located inside the unitary cube; General approach 
- it belongs to the range of J  (true by construction), mLet M  be a point of the range of  and belonging to the 

unitary circle. Vector 
mJ

OM  (where  is the origin of the 
frame) is a linear combination of vectors 

O

nQQ ee &&
r

K
r

,,
1

)

. Let 

be the column matrix representative of this vector in the 
base of the range 
M

,,(
1

)
nQQ ee &&Im(

r
K

r
=Β . The relation 

mJ

1=OM results in: 

 
To belong to the joint cube, point M ′ must respect the 

following condition: 
miMOe

iq ,,11 L
r
& =≤′⋅  

Indeed, the cube is defined by faces. However, the 
problem is symmetric with respect to point , and only 

faces have to be considered. Such faces are directed by 
vectors 

m2
O

m
mie

iq ,,1 L
r
& = , of the joint space canonic base. This 

expresses the fact that M ′ belongs to the  admissible 
domain of space, delimited by the plan perpendicular to 

thi

iqe &
r . , 

such that the distance from point O  to the plan is equal to 1. 
This can be written in matrix form as follows:  

 1MMT = . (4)

 
The largest ellipse in joint space is calculated with two 

transformations: (i) the original unitary circle is expanded 
(point M  is transformed in point M~ ), (ii) the expanded ellipse 
is rotated (point M~  is transformed in point in M ′ ). Thus:  1≤′ME T

i , (7)
 

where  is the column matrix associated to vector eiE
iq&

r  in base 

),,(
1

Im(
nQQ ee &&)

r
K

r
=Β

mJ .  
- M~  belongs to an ellipse whose axis are the vectors of 

, and whose half-axes length are , )mJIm(Β ndd ,,1 K
~The column matrix representative of point M  in frame of 

origin O  and base Β , is noted M)Im( mJ
~ , and verifies: 

 
Finding the vectors perpendicular to the ellipse and the 

polytop. 
 MDM =

~  (5) To guarantee that all ellipse points belong to the 
admissible domain, it is sufficient to verify that the point 

closest to the  face is inside this domain. For such a point, 
the vector perpendicular to the ellipse, 

thi
thi

n′ , is collinear to the 
vector, 

iqe &
r′ , perpendicular to the considered face of the polytop 

(cf. fig. 16).  

where  ( )ndddiag ,,1 L=D
 

- M ′  belongs to the ellipse of greatest surface. 
M′ , the matrix associated to point M ′  verifies: 
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 with: 
Let be 

iqe &
r′  the projection of vector e

iq&
r  in the range of . 

Because  does only direct a subpart of the articular 

space it has to be noticed that E  is also the column matrix 
associated to vector 

mJ

)m
ΒIm(J

i

iqe &
r′ .    

r

R  a rotation matrix 
 
Defining the admissible ellipses 
 
To summarize the situation, the system of matrix equations 

to be solved is the following: 

1qe &
r′

n′M ′

1qe &′

 

{ },,,1 mK∈∀i  1MMT =  (4) 

 MDM =
~  (5) 

 MRM ~
=′  (6) 

 1≤′ME T
i  (7) 

 iEN ×=′∃ kk /  (8) 

 MDN 2 ~~ −=  (9) 

 NRN ~
=′  (10) 

fig. 16 � Colinearity normal to the ellipse / normal to the frontier 

The colinearity relationship is expressed as: 
 iEN ×=′∃ kk / , (8)

Where: 
 

-  is the column matrix associated to vector N′ n′  in base 
, )mJIm(Β

(5) and (6) imply that: 
 MDRM =′ . (11)

-  is the column matrix associated to vector iE
iqe &

r′ . 
(9) and (10) lead to: 

 
 MDRN 2 ~−=′ , (12)

Let point M~  be defined in the frame )Im(,
mJΒO  by the 

following set of coordinates: 
(12) and (5) lead to: 

 MDRN 1−=′ . (13)),,( 1 nxx K  
Inverting (13) leads to: Then the ellipse whose axis are the vectors of , 

and whose half-axes length are  is defined by: 
)Im( mJΒ

ndd ,,1 K  NRDM T ′=  (14)

01)~( 2
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2
1
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1 =−++=

n
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d
x

d
xMf K  

Combining (11) and (7) gives: 

 1≤MDRE T
i  (15)

Then the vector perpendicular to the ellipse at point M~ , 
n~ , is defined by:  

Combining (8) and (14) gives: 

 i
T ERDM ×=∃ kk /  (16)
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d
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22
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1 22)~]([~
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++== . Combining (16) and (4), knowing that is diagonal, can be 
written as follows: 

D

With matrix in base , this results in relation: )Im( mJΒ  1/ 2 =∃ i
T2T

i ERDREkk  (17)

 MDN 2 ~~ −= . (9) In the same way, combining (16) and (7) leads to: 

 1/ ≤∃ i
T2T

i ERDREkk  (18)In fact, because D  is a diagonal matrix,  is defined by: 2D−

While making sure that , (18) gives: i
T2T

i ERDREk≤0
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Knowing (17), (19) simplifies in the inequality: 

 1≤i
T

i EΣE  (20)Then n′  is obtained as: 

 NRN ~
=′ . (10) with , a symmetrical matrix.  T2 RDRΣ =
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Of course,  (20) has to be verified for all i . m,,1 L=
∏
=

−
n

i
id

1

2   
As a matter of fact, a relation exists between vectors E  

and matrix . Matrix  can be expressed as follows: 
i

U U It can be seen that the determinant of is: Σ

[ ]21 UUU =   )det()det()det()det()det( 212 DRDRΣ =××= −  
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To conclude, determining the ellipse of greatest surface 
included in the joint polytop, consists in finding the 
symmetrical matrix  which verifies: Σ

)det(Σ−  minimum  

under constraints 
{ }miii ,,11)()( L∈∀≤T

11 UΣU . 

 
The eigen value decomposition of the real symmetric  

gives: 
Σ

 TR∆RΣ =  (24)

And since 



















⋅

⋅
=

ni

i

Qq

Qq

ee

ee

&&

&&

rr
M

rr
1

iE  is expressed as follows: 1U
With 
- R  is the orientation matrix (note that 1T RR −= ) 
- ),,( 1 ndiag δδ L=∆  

- iid δ=   

 
















=
T

m

T
1

1

E

E
U M . (21)  

The knowledge of R  and  characterizes entirely the 
ellipse of greatest surface included inside the joint polytop. 
This matrix is then mapped by matrix S  to the ellipse of 
largest surface included in the operational polytop (This point 
will be proven in next section). 

D

1
1
−

Noting  the line of matrix U equation (20) can be 
rewritten as: 

)(i1U thi 1

 { } 1)()(,,1 ≤∈∀ T
11 UΣU iimi L  (22)

The sought matrix which represents the transformation 
of a unitary circle in the admissible part of joint space into 
the largest ellipse included inside the operational space 
polytop is given by: 

 
Finding the largest admissible ellipse 
 
Among all those ellipses respecting (22), the one of 

maximal surface still have to be found. This problem is 
described here as an optimization problem. DRSΧ 1

1
−=  

 
The surface of an hyper-ellipse equals to: The proposed index is then related to singular values of 

this matrix, e.g. , or )(Xcond ))(min( Xσ , etc. 
∏
=

×=
n

i
idkA

1

, 
3.3.2  Reasoning in operational space 

with π=k  for  ,2=n π
3
4

=k  for , etc. 3=n Rather than seeking the ellipse of maximum surface included 
inside the joint polytop, and then computing its image in the 
operational space, it is possible to find the ellipse of greatest 
surface included inside the operational polytop. 

 
Maximizing A  is equivalent to maximizing the product of 

the ellipse half-axes length. It is also equivalent to minimize the 
following expression:  
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Reasoning in joint space The following relation describes the mapping between the 
operational space and the range of : mJ 1)()( ≤T

1
T

1
T

11 USXXSU ii   
 KSM 1 ′=′  (25) Reasoning in operational space 

With: 1)()( ≤′′ T
1

T
1

T
11 USXXSU ii  )( mJrangeM ∈′  

K� a point in operational space In joint space, )det(Σ−  has to be minimized, that is 

, because: )det( TXX−M′  the column matrix associated with  M� in Β  )Im( mJ

K ′  the column matrix associated with K� in the singular 
vectors base. )det()det(2)det( T

1 XXSΣ −=−  
 
M� belongs to the joint polytop:  0)det( >1S  

 mi ,,11 L=≤′ME T
i  (26)

In operational space )det(Σ′−  has to be minimized, that is: 

. Thus, both entities are obtained as results of the 
same optimization problem under the same constraints. 

)det( TXX ′′−
Thanks to relation (25), equation(26) becomes in operational 
space: 

 1≤′KSE 1
T

i  (27)

Since equation (27) is the only equation that differs from 
the system of equations of the previous section, the resolution 
of the system leads to: 

4 Determination of extreme velocities of the operational 
polytop 

In this section, the extreme velocities of the operational polytop 
will be determined. The �lowest� velocity is defined as the 
minimum velocity always reachable by the nacelle in all 
directions of the operational space. The �highest� velocity is 
the maximum velocity that can be reached by the nacelle in a 
very particular direction. 

 { } 1)()(,,1 ≤′∈∀ T
1

T
111 USΣSU iimi L (28)

where  is a symmetrical matrix defined as follows: 
 

Σ′
T2 RDRΣ ′′′=′

Those equations express the constraints that must be fulfilled 
by the operational ellipse to be located inside the operational 
polytop. Those relations are very similar to those obtained in 
the joint space. 

The highest velocity v  belongs necessary to a vertex 

of the polytop; the lowest value v  is located on one of the 
faces (cf. fig. 13). 

max
polytop

min
polytop

 
 In the operational space, the optimization problem consists 

in fining a symmetrical matrix  which verifies: Σ′ Finding  max
polytopv

)det(Σ′−  minimum Referring to (27), a point  belonging to the i  face can 
be described by: 

iK ′ th

under constraints 
 1=′i1

T
i KSE  (29){ }miii ,,11)()( L∈∀≤′ T

1
T

111 USΣSU  
A point { }miK im ,,1, K∈′ + , belonging to the opposite face 

(the   face) can be described by: thim )( +
 

The eigen values decomposition of Σ  leads to matrix ′ R′  
and . Matrix Χ  characterizes the linear application 
that transforms a unitary circle in the ellipse of maximum 
surface included into the operational polytop. The ratio of 
extreme diagonal values of  constitutes the isotropy index 
built previously. 

D′ DR ′′=′

D′

 1=′− +im1
T

i KSE  (30)

In the optimization problem faces of type (30) had not been 
considered; here they must be taken into account. A vertex of 
the polytop is a point of the n-dimensional operational space. 
The 2m frontier equations (m of type (29) and m of type (30)) 
will be seek, to find all the combinations of n faces which 
generate a vertex. For this, all  possible systems will be 
considered. 

n
mC2

One can check that , that is to say that the ellipses 
obtained with both methods are the same. In fact referring to 
the definitions of  and , it can be verified that: 

XΧ ′=

X′Χ
  T

1
T

1 SXXSΣ =
T

If the i  system can be solved, the fact that point th

{ }iKi ,1, K m2,∈′  belongs to the polytop will have to be 
verified. The system might have no solution, for example when 

XXΣ ′′=′ .  
 
So the admissible domains constraints can be written as: 
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two vectors ie
r

 et e j
r  have the same projection in the range of 

: . Moreover, when a point  is established, this 
point might be located outside the admissible space (cf. fig. 17).  
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2Q& 5 Conclusion 
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In this paper we have firstly shown the limits of classical 

indexes based on the Jacobean matrix condition number when 
Parallel Mechanisms with Actuation Redundancy are 
considered in terms of velocity isotropy. We have introduced 
new tools to analyze and optimize such mechanisms. The first 
set of tools offers measures based on a classical point of view, a 
velocity ellipsoid, with an important feature: the sought 
ellipsoid is much closer to the real machine capability than the 
one usually considered. The second set of tools is based on 
velocity polytop: the ways to efficiently compute such a 
polytop and, more important, its extreme values have been 
described. It is expected that indexes based on both analysis 
can be usefully implemented in optimization processes for new 
redundant parallel mechanisms. 

fig. 17 � Determination of a point outside from the admissible 
polytop 

Once all vertices are determined, the highest distance 
between the center and points  is given by: iK ′

 { } i
i

K ′=
∈ m

ramparallelogv
2,,1

max max
K

 (31)
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Abstract: A method for determining the reachable workspace of
general planar three degree of freedom platforms with three legs
of arbitrary architecture is presented, where only the active joints
are in the presence of limits. A brief review of kinematic mapping
is given. The kinematic image of the workspace consists of solid
regions bounded by the intersection of minimum and maximum
joint input constraint surfaces, a pair for each platform leg. The
condition that the leg joining the moving platform to the fixed
base be connected with three independent one degree of free-
dom lower pair joints is employed. Because the procedure uses
position-level constraint surfaces in a kinematic image space, it
additionally allows for the analysis of some platforms containing
holonomic higher pairs.

1 Introduction

Research interest in parallel manipulators has grown steadily
over the last twenty-five years. This is partly due to their in-
herent advantages over serial manipulators where accuracy, stiff-
ness, load-to-weight-ratio and operating speeds are concerned
[1]. One major disadvantage of parallel manipulators in gen-
eral, compared to serial ones, is that their reachable workspace
is small and may contain a high density of interior singularities
[2, 3]. Although the workspace analysis of planar three-legged
manipulators is well established, see [4, 5, 6] for example, there
exists no unified approach that is architecture independent. This
gives the motivation for the work presented herein.

In this paper kinematic mapping is used to analyze the reach-
able workspace planar three-legged platforms of arbitrary ar-
chitecture in the presence of joints limits on only the actuated
joints. Such ageneral planar three-legged platform(GP3LP)
consists of a moving platform connected to a fixed base by three
kinematic chains. Each chain is connected by three indepen-
dent one degree-of-freedom (DOF) joints, one of which is ac-
tive, see [7, 8]. The method employed is based on that found

in [6], wherein platforms consisting of three revolute-prismatic-
revolute (RPR) legs, the actuated joint being theP -pair, are an-
alyzed. This approach can be generalized to all possible GP3LP
due to the results presented in [9] and [10]. It can also be adapted
for analysis of a sub-class of platforms with actuated holonomic
higher pairs [11].

For GP3LP with three DOF we consider the motions of the
platform by examining the motions of each leg separately. The
kinematic mapping transforms distinct planar displacements of a
reference frame rigidly attached to the platform to distinct points
in a three dimensional projective image space. When the joints
are restricted to lower-pairs,prismatic(P ) andrevolute(R) pairs,
then depending on the details of how the kinematic chain is ar-
ranged the image space point sets can be one of only two types:
1) if the constraint is linear (a point on the moving platform re-
mains on a fixed line, or the inversion of a line on the platform
moving on a fixed point) the corresponding image space point
set is an hyperbolic paraboloid; 2) if the constraint is circular (a
point on the moving platform remains on a fixed circle) the cor-
responding image space point set is an hyperboloid of one sheet
[9]. Because these quadric surfaces contain the images of the
constrained displacements, it is natural to call themconstraint
surfaces. Kinematic analysis of GP3LP reduces to intersection
problems between the constraint surfaces for each leg.

Because of the illustrative description of all possible posi-
tions of the end-effector system as a surface-bound solid region
in an image space, it is believed that this is a useful tool for de-
signers. Moreover, it facilitates computations when the reachable
workspace of more than one reference point in the end-effector
system has to be determined.

2 Classifying General Planar Three-Legged Platforms

A GP3LP with three DOF consists of a moving platform con-
nected to a fixed base by three simple kinematic chains. Each
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chain is connected by three independent one DOF joints, one of
which is active. Thus each chain provides the control of one of
three DOF of the moving platform. Since the displacements of
the platform are confined to the plane, onlyR- andP -pairs are
used. But, in certain cases a holonomic higher gear pair (G) can
replace a lowerR-, or P -pair (one such platform is considered
in Section 5.3. Platform motions are characterized by the motion
of reference frameE, attached to the moving platform, relative
to frameΣ, attached to the non-moving base, see Figure 1.

The possible combinations ofR- andP -pairs which connect
the moving platform to the fixed base and constrain the indepen-
dent open kinematic chains, consisting of successions of three
joints starting from the fixed base, in a GP3LP are [7]:

RRR, RPR, RRP, RPP, PRR, PPR, PRP, PPP.

We must, however, exclude thePPP chain because no combi-
nation of pure planar translations can cause a change in orien-
tation. Thus, there are seven possible kinematic chains, which
may be combined in either topologically symmetric or asymmet-
ric groups of three. Figure 2 illustrates topologically symmetric
platforms, each characterized by one of the seven allowable sim-
ple kinematic chains. For our working definitions of topological
symmetry and asymmetry, see the last paragraph in Section 2.1.

Figure 1: The moving frameE and fixed frameΣ for any com-
bination of legs from Table 1.

2.1 Passive Sub-chains

The active joint in a leg is identified with an underscore,RPR,
for example. Since any one of the three joints in any of the
seven allowable simple kinematic chains may be actuated there
are twenty-one possible leg architectures.

Figure 2: The seven possible leg topologies insymmetricplat-
forms. When the legs are not all the same, the platform isasym-
metric.

When the value of the activated joint coordinate in a leg is
specified, the joint is effectively locked and may be temporar-
ily removed from the chain. What remains is a kinematic chain
connected with two passive joints. Examining Figure 2, it is to
be seen that the resulting passive sub-chain is one of only four
types: eitherRR, PR, RP , or PP . For now we excludePP -
type legs from the enumeration since platforms containing two or
three such legs either move uncontrollably or are not assemblable
when the actuated joint variables are specified [7, 12]. Nonethe-
less, platforms containing onePP -type leg are feasible. They
are discussed in Section 4.4, but are not included in the enumer-
ation because the expression of their constraints in a way that
is compatible with the kinematic mapping remains an open, but
likely straightforward, problem. This reduces the number of pos-
sible leg architectures to eighteen. They are listed, according to
passive sub-chain, in Table 1.

The platform is considered to besymmetricwhen all three
legs are the same type, each possessing the same type of actu-
ated joint at the same location in the kinematic chain. The leg is
otherwise considered to beasymmetric.
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RR-type PR-type RP -type

RRR RPR RRP

RRR PRR RRP

RRR PRR RPR

PRR PPR PRP

RPR PPR RPP

RRP PRP RPP

Table 1: The 18 possible leg architectures.

2.2 Enumerating the GP3LP

How many distinct GP3LP with three DOF are there? This num-
ber is arrived at by considering that there are 18 possible kine-
matic chains to choose from for each leg. A selection ofr differ-
ent elements taken from a set ofn, without regard to order, is a
combination of then elements takenr at a time. If the elements
are allowed to be counted more than once the number of possible
combinations is given by

C(n, r) =
(n + r − 1)!
r!(n− 1)!

⇒ C(18, 3) = 1140. (1)

3 Planar Mapping

Consider the reference frameE which can undergo general pla-
nar displacements relative to reference frameΣ, as illustrated
in Figure 1. Let the homogeneous coordinates of points in the
moving frameE be the ratios(x : y : z), and homogeneous co-
ordinates of the same point, but expressed in the fixed frameΣ,
be the ratios(X : Y : Z). The homogeneous transformation that
maps points inE to Σ can be written as




X
Y
Z


 =




cos ϕ − sin ϕ a
sinϕ cos ϕ b

0 0 1







x
y
z


 . (2)

Equation (2) underscores the fact that a general planar displace-
ment is characterized by the three parametersa, b, andϕ, where
a andb are the(X, Y ) coordinates of the origin ofE expressed
in Σ andϕ is the orientation ofE relative toΣ, respectively.

The essential idea of the kinematic mapping, introduced si-
multaneously but independently by Blashke [13] and Grünwald
[14] in 1911, is to map the three homogeneous coordinates of the
pole of a planar displacement, in terms of(a, b, ϕ), to the points
of a three dimensional projective image space. The kinematic

mapping image coordinates are defined as:

X1 = a sin (ϕ/2)− b cos (ϕ/2)
X2 = a cos (ϕ/2) + b sin (ϕ/2)
X3 = 2 sin (ϕ/2)
X4 = 2 cos (ϕ/2). (3)

Since each distinct displacement described by(a, b, φ) has
a corresponding unique image point, the inverse mapping can be
obtained from Equation (3): for a given point of the image space,
the displacement parameters are

tan (ϕ/2) = X3/X4,

a = 2(X1X3 + X2X4)/(X2
3 + X2

4 ),
b = 2(X2X3 −X1X4)/(X2

3 + X2
4 ). (4)

Equations (4) give correct results when eitherX3 or X4 is zero.
Caution is in order, however, because the mapping is injective,
not bijective: there is at most one pre-image for each image
point. Thus, not every point in the image space represents a dis-
placement. It is easy to see that any image point on the real line
X3 = X4 = 0 has no pre-image and therefore does not cor-
respond to a real displacement ofEE. From Equation (4), this
condition rendersϕ indeterminate and placesa andb on the line
at infinity.

By virtue of the relationships expressed in Equation (3), the
transformation matrix from Equation (2) may be expressed in
terms of the homogeneous coordinates of the image space. This
yields a linear transformation to express a displacement ofE
with respect toΣ in terms of the image point [15]:




X
Y
Z


 = T




x
y
z


 , (5)

where

T =

24 X2
4 −X2

3 −2X3X4 2(X1X3 + X2X4)
2X3X4 X2

4 −X2
3 2(X2X3 −X1X4)

0 0 X2
3 + X2

4

35 .

The inverse transformation can be obtained with the inverse of
the matrix in Eq. (5) as follows.




x
y
z


 = T−1




X
Y
Z


 , (6)

with

T−1 =

24 X2
4 −X2

3 2X3X4 2(X1X3 −X2X4)
−2X3X4 X2

4 −X2
3 2(X2X3 + X1X4)

0 0 X2
3 + X2

4

35 .

Thus, the coordinates of a point(x, : y : z) in the (relatively)
moving frame has coordinates(X, : Y : Z) in the (relatively)
fixed frame:
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X = (X2
4 −X2

3 )x− (2X3X4)y + 2(X1X3 + X2X4)z,

Y = (2X3X4)x + (X2
4 −X2

3 )y + 2(X2X3 −X1X4)z,

Z = (X2
3 + X2

4 )z. (7)

While the inverse, coordinates of a point(X, : Y : Z) in the
(relatively) moving frame has coordinates(x, : y : z) in the (rel-
atively) fixed frame are given by:

x = (X2
4 −X2

3 )X + (2X3X4)Y + 2(X1X3 −X2X4)Z,

y = −(2X3X4)X + (X2
4 −X2

3 )Y + 2(X2X3 + X1X4)Z,

z = (X2
3 + X2

4 )Z. (8)

4 Constraint Surfaces

The lower-pair constraints on the motion of any particular leg in
an arbitrary GP3LP involve only one of the following.

1. A point with fixed coordinates in the moving frame moves
on a fixed circle of fixed radius in the fixed frame (RR-type
constraint).

2. A point with fixed coordinates in the moving frame moves
on a fixed line in the fixed frame (PR-type constraint).

3. A line with fixed coordinates in the moving frame moves on
a fixed point in the fixed frame (RP-type constraint).

The last two constraints are kinematically equivalent when con-
sidered inversions of each other. It may additionally be argued
that the circular constraint is the most general, since a line can
always be considered as a circle of infinite radius.

4.1 Implicit Equation of General Constraint Surface

A clearer picture of the image space constraint surface that corre-
sponds to the kinematic constraints emerges when(X : Y : Z),
or (x : y : z) from Equations (7), or (8) are substituted into the
general equation of a circle, the form of the most general con-
straint:

K0(X2 + Y 2) + 2K1XZ + 2K2Y Z + K3Z
2 = 0, (9)

where [K0 : K1 : K2 : K3] are thecircle coordinates, with
K1 = −Xc, K2 = −Yc, K3 = X2

c + Y 2
c − r2, with Xc andYc

being the coordinates of the circle centre of radiusr, andK0 is
an arbitrary homogenising constant. One obtains the following
implicit equation of a constraint surface in the image space:

K0z
2(X2

1 + X2
2 ) + (−K0x + K1z)zX1X3

+(−K0y + K2z)zX2X3 ∓ (K0y + K2z)zX1X4

±(K0x + K1z)zX2X4 ∓ (K1y −K2x)zX3X4

+
1
4
[K0(x2 + y2)− 2z(K1x + K2y) + K3z

2]X2
3

+
1
4
[K0(x2 + y2) + 2z(K1x + K2y) + K3z

2]X2
4 = 0. (10)

If the kinematic constraint is a fixed point inE bound to a
circle (K0 = 1), or line (K0 = 0) in Σ, then(x : y : z) are the
coordinates of the platform reference point inE and the upper
signs apply. On the other hand, if the kinematic constraint is a
fixed point inΣ bound to a circle (K0 = 1), or line (K0 = 0) in
E, then(X : Y : Z) are substituted for(x : y : z), and the lower
signs apply.

The Ki are functions of the variable joint input parame-
ter. The constraint surfaces defined by the joint input are not
arranged arbitrarily in the image space. It turns out that the im-
age of the workspace for a particular leg is bounded by the two
constraint surfaces corresponding to the minimum and maximum
variable joint input parameters. Moreover, it can be shown that
the hyperboloid of one sheet and the hyperbolic paraboloid are
the only possible constraint surfaces for such planar three-legged
platforms [9].

4.2 Circle Constraints

When one setsK0 = 1, together withX4 = z = 1 in Eq. (10)
the result is the implicit equation of a hyperboloid of one sheet
in terms of the image space coordinates(X1, X2, X3)[9, 10]:

(X2
1 + X2

2 ) + (K1 − x)X1X3 + (K2 − y)X2X3

∓(K2 + y)X1 ± (K1 + x)X2 ± (K2x−K1y)X3

+
1
4
[(x2 + y2)− 2(K1x + K2y) + K3]X2

3

+
1
4
[(x2 + y2) + 2(K1x + K2y) + K3] = 0. (11)

This hyperboloid has the property that planes parallel toX3 = 0
intersect it in circles, though its axis is not necessarily perpendic-
ular toX3 = 0. For planar three-legged platforms, the inversion
of a fixed circle in the moving frame moving on a fixed point in
the fixed frame never arises.

All points on this constraint hyperboloid represent displace-
ments of the platform for the given input in the given leg when
the remaining two legs have been disconnected from the plat-
form. It can be easily parameterized [9], an example illustrated
in Figure 3 shows the minimum and maximum constraint hyper-
boloids for the three legs of a symmetricRPR platform, similar
to the one shown in Figure 9.

4.3 Line Constraints

If K0 = 0 in Eq. (9) we obtain a line, which is a real degen-
erate circle, withline coordinatesdetermined by the relation
[L1 : L2 : L3] = [2K1 : 2K2 : K3]. SettingK0 = 0, to-
gether withX4 = z = 1 in Eq. (10) one obtains the implicit
equation of a hyperbolic paraboloid in the image space [9, 10]:

K1X1X3 + K2X2X3 ∓K2X1 ±K1X2 ± (K2x−K1y)X3

−1

4
[2K1x + 2K2y −K3]X

2
3 +

1

4
[2K1x + 2K2y + K3] = 0. (12)

The kinematic inversion betweenPR- and RP -type legs,
unlike theRR case, is a concern here. Equation (12) is used to
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represent both. ForPR-type legs a point with fixed coordinates
in the moving frame moves on a fixed line in the fixed frame. In
this case the corresponding constraint equation is given by Equa-
tion (12) the upper signs are used. However, forRP -type legs,
where the constraint is a line with fixed coordinates in the mov-
ing frame moving on a fixed point in the fixed frame, the lower
signs are used andx, y, or z is substituted wheneverX, Y , or
Z are encountered. A parameterized example is illustrated in
Figure 5, showing the minimum and maximum constraint hyper-
bolic paraboloids for the three legs of a symmetricPPR, similar
to the one shown in Figure 4.

4.4 PP-Type Legs

The image space constraint surface corresponding to possible
displacements of aPP -type leg is a degenerate quadric that splits
into a real and an imaginary plane. This is because only curvilin-
ear motion of the platform can result when the other two platform
attachment joints are disconnected: once the angular input of the
activeR-pair is fixed no rotation of leg or platform is possible.
Still, the image of a two parameter family of displacements must
be a two parameter constraint manifold, but becauseϕ is con-
stant, the image space coordinatesX3 = f(ϕ) andX4 = g(ϕ)
must also be constant. Hence, the finite part of the two dimen-
sional constraint manifold is linear and must be a hyper-plane.

Moreover, all planes corresponding to possible displace-
ments of thePP -type leg are parallel toX3 = 0. If the platform
consists of two, or threePP -type legs, the constraint planes may
be distinct, but parallel thereby having no finite points in com-
mon; or the planes will be coincident, indicating infinite assem-
bly modes yielding uncontrollable self motions.

There is no practical design merit associated with platforms
containing two, or threePP -type legs. This, however, does not
preclude designs of topologically asymmetrical three legged pla-
nar platforms with at most onePP -type leg. On the other hand,
the self-motion property provides possibilities to design very stiff
one DOF planar platforms which are relatively easy to actuate.

5 Examples

5.1 Workspace ofRPR-Symmetric Platforms

The first use of kinematic mapping for workspace analysis of
planar three-legged platforms was in [6]. However, the particular
approach is suitable only forRPR-symmetric platforms, similar
to that found in Figure 9.

The first step is to parameterize Equation (11). One possi-
bility is [9]24 X1

X2

X3

35 =
1

2

24 [(K1 + x)t−K2 + y] + (ri

√
t2 + 1) cos ζ

[(K2 + y)t +K1 − x] + (ri

√
t2 + 1) sin ζ

2t

35 ,

ζ ∈ {0, . . . , 2π},
t ∈ {−∞, . . . ,∞},
imin ≤ i ≤ imax,

(13)
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Figure 3: Workspace image of anRPR-symmetric platform.

whereK1 andK2 are two circle coordinates, as defined previ-
ously, x and y are the coordinates of the platform attachment
point expressed inE, ri is the length of the prismatic joint in the
ith leg, t is the tangent of half the orientation angle of the plat-
form, tan ϕ/2, andζ is an angular parameter arising from the
derivation of the parametric equation.

For each leg in theRPR platform, the activeP -pair has a
minimum and a maximum extention. Examining Equation (13)
one immediately sees this corresponds to a minimum and a max-
imum pair of coaxial hyperboloids.

The minimum and maximum constraint hyperboloids for
eachRPR leg must be determined. The image of the reach-
able workspace of a specific platform reference point is the solid
bounded by the six hyperboloids. To obtain the image of the
workspace we consider all positions of the reference point for
fixed platform orientations for each leg. This involves intersect-
ing the three surface bound solids with the planesX3 = constant.
The corresponding curves are three pairs of concentric circles.
The area common to the six circles, if any, is the image of the
reachable workspace of the reference point for the specific ori-
entation.

It is a simple matter to determine the pre-image, giving the
Cartesian workspace for the reference point. This is done by
selecting a reference point, (x : y : 1), then substituting the
expressions for the three sets of hyperboloid circles into Equation
(7). Again, the area common the the six pre-image curves, if any,
is the Cartesian reachable workspace of the reference point for
the given platform orientation. The entire Cartesian reachable
workspace is the union of all orientation layers. An example of
the workspace image is illustrated in Figure 3, while a detailed
example is given in [6].

It is easy to see computing the image for another reference
point is not difficult. Note, the platform reference point is com-
pletely arbitrary: the pre-image depends on the choice for the
platform reference point. Examples for theRRG and thePPR
symmetric platforms follow in the next sections.
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Figure 4: APPR-symmetric platform.

5.2 PPR-Symmetric Platforms

For each leg in thePPR platform the activeP -pair has a min-
imum and a maximum extension. The only variable quantities
are the length of theP -pair, and the platform reference point
coordinates,(x : y : z); all other quantities are design con-
stants. Hence, for a selected platform reference point there is a
minimum and a maximum hyperbolic paraboloid constraint sur-
face corresponding to the minimum and maximum length of the
P -pair. It turns out that every pair of hyperbolic paraboloids
in a given family have the same curve of intersection because
terms dependent on the length of theP -pair can be factored out.
This can be seen when the intersection curve is projected into the
planesX1 = 0, X2 = 0, X3 = 0 andX4 = 0. Therefore, the
whole set of hyperbolic paraboloids in a family forms a pencil
of quadrics. The solid bounded by the minimum and maximum
hyperbolic paraboloid in each leg is the kinematic image of the
platform workspace when the other two legs are disconnected.
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Figure 5: Workspace image; 3D view of workspace layers of a
PPR-symmetric platform.

Figure 6: AnRRG-symmetric platform.

The left-hand side of Figure 5 shows the minimum and a
maximum hyperbolic paraboloid constraint surfaces correspond-
ing to the minimum and maximum length of the activeP -pair in
each of the symmetricPPR platform legs. Exploiting some ge-
ometric properties of the constraint manifold, we can derive the
following parametric form [9]:




X1

X2

X3


 =




f(t) + s
g(t, s)

t


 ,

−∞ ≤ t ≤ ∞,
−∞ ≤ s ≤ ∞,

(14)

wheret ands are linear parameters and

f(t) = (K3+2K1x+2K2y)t2+(K1y−K2x)4t−2(K1x+K2y)+K3
4(K1t−K2)

,

g(t, s) = (K2−K1t)s
K1+K2t .

The right-hand side of Figure 5 shows different layers of the
reachable Cartesian reachable workspace. There are 13 layers,
each representing a30◦ increment inϕ. The top layer represents
a platform orientation of180◦, the second from the bottom is
that of−180◦, while the shaded bottom layer is the union of all
the layers. The platform has orientation singularities between
approximately10◦ and70◦, hence the layers representing30◦

and60◦ are empty.

5.3 RRG-Symmetric Platforms

Perhaps the most interesting, from a geometric perspective, is
a three-legged platform possessing an active higher-pair as the
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Figure 7: Workspace image of one leg of anRRG-symmetric
platform.

third joint in each kinematic chain. For this type of platform it
can be shown, see [16, 11], that the workspace image for each
leg consists of the solid bounded by an envelope of hyperboloids
of one sheet possessing identical shape parameters, but unique
axis. For every value of the higher pair input there corresponds
an hyperboloid axis, all belonging to a ruled surface. The solid
bounded by the envelope of these hyperboloids is the image of
the workspace for that leg when the other two have been discon-
nected from the pinion. The image of the workspace of the entire
platform is the solid region bounded by the intersection of these
three envelopes. For the example found in [11], the reachable
workspace image of one leg is shown in Figure 7.

The left-hand side of Figure 8 shows different layers of the
reachable Cartesian workspace for the reference point taken to be
the centre of the pinion. There are 13 layers, each representing
a 30◦ increment in the orientation of the pinion. In right-hand
side of Figure 8, the different layers are given different elevations
according to the pinion orientation. The top layer is the reachable
workspace for a pinion orientation of180◦ while the second layer
from the bottom is that of−180◦ orientation. The bottom is the
union of all the layers.

The dextrous workspace of a manipulator is usually defined
as the set of all points within the reachable workspace that the
end-effector can reach with any orientation. Examining the left-
hand side of Figure 8, the boundary of the dextrous workspace
is seen to be the shaded region that is common to all layers. An
area computation reveals that the dextrous workspace comprises
31.71% of the reachable workspace. Moreover, the reachable
and dextrous workspace contain no holes; a remarkable result
when compared with lower pair jointed three-legged platforms,
see [2, 17], or [6], for example.

Figure 8: Overlay of workspace layers; 3D view of workspace
layers.

5.4 RPR Platform: Different Active Joint in Each Leg

The general case of a three-legged platform can be demonstrated
using a platform possessing threeRPR legs where the active
joint is different in each of the three legs: leg A is RR-type, leg
B is PR-type, leg C is RP-type. This platform is illustrated in
Figure 9.

5.4.1 FK Example

Here we use the general FK procedure [10] to solve the FK prob-
lem of a platform with one each ofRPR, RPR, andRPR legs,
shown in Figure 9. The relevant kinematic mapping parameters,
listed in Table 2, are the fixed base points(X : Y : Z) expressed
in Σ, the relatively moving platform points(x : y : z) expressed
in E, the variable joint inputs (the subscripts onβ andγ indicate
the frame in which the angle is measured counter-clock-wise rel-
ative to theX or x axis, respectively), and the corresponding
circle coordinates for the platform illustrated in Figure 9.

i (X : Y : Z) (x : y : z) Input
A (0 : 0 : 1) (0 : 0 : 1) d = 2.5

B (6 : 0 : 1) (2 : 0 : 1) βΣ = 135◦

C (3 : 6 : 1) (1 : 2 : 1) γE = 45◦

i (K0 : K1 : K2 : K3)

A (1 : 0 : 0 : −4)

B (0 : −√2/4 : −√2/4 : 3
√

2)

C (0 : −√2/4 : −√2/4 : −√2/2)

Table 2: Kinematic mapping parameters.

The corresponding three constraint surfaces are a hyper-
boloid of one sheet for theRPR leg A, a hyperbolic paraboloid
for theRPR leg B, and an inversion hyperbolic paraboloid for
theRPR leg C. The univariate inX3 (see Eq. 15) is computed
together with corresponding values ofX1 andX2 for the real
roots of the univariate, which in this case is5th order:

45X5
3 − 77X4

3 + 56X3
3 + 120X2

3 − 53X3 + 5. (15)

The solutions must be carefully inspected. There are three
real and one pair of complex conjugate roots. One root,X3 =
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Figure 9: A platform with one each ofRPR, RPR, and RPRlegs.

−1, represents a line that is a common generator between the
two hyperbolic paraboloids, but that does not intersect the hyper-
boloid in any finite points.

The two real roots that lead to solutions are listed in Ta-
ble 3. The kinematic mapping image of the two solutions can
be seen as the two points common to the three surfaces in Fig-
ure 10, while the corresponding configurations are illustrated in
Figure 11. Note that the common line bewteen the two hyper-
bolic paraboloids is visible in the same figure.

Solution a b ϕ (deg)
1 2.2993 0.9814 29.0303
2 1.5837 1.9344 16.3404

Table 3: The two real Cartesian solutions.
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Figure 10: The image of the two real FK solutions.

5.4.2 Workspace

The strategy for determining the kinematic image of the reach-
able workspace for arbitrary mixed-leg platforms is an extension
of the approach to solving the FK. For each leg we determine
the constraint surfaces corresponding to the minimum and maxi-
mum variable joint inputs. ForRR-type legs, the constraint sur-

Figure 11: The two real FK solutions.

Figure 12: Three hyperbolic paraboloid for three input angles in
anRPR leg, andaxis.

faces are hyperboloids of one sheet all sharing the same axis.
For RP - and PR-type legs the constraint surfaces are hyper-
bolic paraboloids, however, the relationship between the mini-
mum and maximum surfaces depends on the type of active joint
in the kinematic chain.

When the active joint is anR-pair, pairs of hyperbolic
paraboloids in a family still intersect in the same type of de-
generate quadratic: a real and imaginary line pair. Figure 12
illustrates three hyperbolic paraboloid constraint surfaces for an
RPR leg for three distinct input angles. They all share the line
shown in the figure, in a sense theaxisof the family of hyperbolic
paraboloids. The working conjecture is that the the real image
space line is finite. Figure 13 shows the hyperboloid family for
leg A and the lines of intersection of the hyperbolic paraboloid
families belonging to legs B and C.

Summarizing the discussion in Section 5.2, if the active joint
is a P -pair, its reach is limited by its minimum and maximum
extention. Hence, for a selected platform reference point there
is a minimum and a maximum hyperbolic paraboloid constraint
surface corresponding to the minimum and maximum length of
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Figure 13: The concentric hyperboloids for leg A and hyperbolic
paraboloid axes for legs B and C.

the activeP -pair. Every pair of hyperbolic paraboloids in a given
family have the same curve of intersection, which degenerates
to a real and imaginary line pair. Therefore, the whole set of
hyperbolic paraboloids in a family forms a pencil of quadrics.
The current working conjecture is that the real line is on the plane
at infinity, thus no two hyperbolic paraboloids in one family have
finite image points in common, recall the left-hand side of Figure
5. The solid bounded by the minimum and maximum hyperbolic
paraboloid in each leg is the kinematic image of the platform
workspace when the other two legs are disconnected.

The Cartesian reachable workspace, not shown here, is the
pre-image obtained by substitutingX1, X2, X3 from either para-
metric Equations (13), or (14) into either Equations (5), or (6),
depending upon the nature of the constraint. The general rules
are as follows:

1. RR-type: substituteX1, X2, X3 from Equation (13) into
Equation (5).

2. PR-type: substituteX1, X2, X3 from Equation (14) into
Equation (5).

3. RP -type: substituteX1, X2, X3 from Equation (14) into
Equation (6), being careful to define the coefficients as de-
scribed in the discussionin Section 4.

6 Conclusions and Future Work

A unified method for determining the reachable workspace of
GP3LP, including a sub-class of three-legged platforms with ac-
tuated holonomic higher pairs, has been presented. The current
state of the determination allows for only the joint limits on the
active pairs. In order to be a truly useful tool for designers the
passive joint limits must be included in the constraint equations.
We are now working with some formulations that could provide
this crucial missing component.PP -type leg constraints must
also be formulated so as to complete the generalization.
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Abstract: This paper will address some of the most important
PKM research issues as seen from a robot manufacturer’s point
of view. In section 2 the importance of linking research activities
to the application requirements is discussed and in section 3,
which is the most important part of this paper, the urgent need
for a systematic topology synthesis is put forward. The rest of the
paper is structured according to a proposed development process
for industrial parallel kinematic robots. Thus, the optimization of
the mechanical design with respect to kinematics and dynamics
is discussed in section 4. In section 5 some problems related
to the selection of components for parallel kinematic robots are
put forward and in section 6 the importance of drive and control
system performance is discussed. Finally, the most important
research topics as seen from an industrial point of view are
discussed in section 7.

1 Introduction

In spite of the high performance potential of manipulator struc-
tures based on parallel kinematics, this technology has not yet
made a dramtatic impact on industrial automation. However,
there is an interesting trend towards the use of general purpose
industrial robots for applications with higher demands on accu-
racy, stiffness, eigenfrequency, cycle time etc. Thus, significant
efforts are now being made to use industrial robots for such
applications as measurements, laser cutting, laser welding, high
precision assembly, grinding, deburring, milling etc. Because of
the inefficient robot performance for these applications, several
compensation methods are used, which add cost and make
installation, programming, maintenance etc. difficult. More-
over, in most cases the industrial robots of today will never
reach the application requirements for these high performance
applications. One way to solve these problems could be to
make use of robots based on parallel kinematics, but it is
not easy to challenge the mature industrial robot technology,
even if some successful structures find increasing market shares

already now. However, parallel kinematic structures provide
such high performance potential that it is important for the
research community to come up with concepts and technologies
which will make parallel kinematic robots a natural choice when
designing flexible automation systems.

2 Analysis of application requirements on parallel kine-
matic robot structures

One example of a successful parallel kinematic structure as
seen from an industrial point of view is the Delta structure.
The reason for this success is that the features of this struc-
ture fit into applications requiring very fast handling of light
weight products, for example in the consumer goods, food and
electronics industries. Thus, to be able to succeed with the
transfer of results from PKM research to industrial product
development, it is very important to understand the application
requirements. Morever, it is important to understand what
PKM features provide advantages in potential applications. For
example, parallel kinematic robot structures may give higher
speed and acceleration, higher static and dynamic accuracy and
higher stiffness than what is possible with the industrial robots
used today. Starting with these competitive features, potential
applications and end users can be evaluated, beginning with a
first simple overview as exemplified by the diagram in Figure 1.

For each application and for each type of installation in
the manufacturing plants of the end users, a detailed study is
needed to find out if the parallel kinematic robot will satisfy
all requirements. The first topic in such a study is to match the
kinematics of the parallel robot with the customer requirements.
This means that simulations must be made to make sure that
the number of degrees of freedom, the working range, the
accessibility and the motion type of the parallel kinematic
structure fulfil the requirements. For example, in pick and place
applications on a flat surface, where only 3 or 4 degrees of
freedom are needed, the working range and the accessibility are
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Figure 1: Diagram exemplifying the relations between potential
performance features of a parallel kinematic robot and the
applications and industries needing this performance for
improved flexible automation.

usually not critical and the kinematics of the Delta structure can
do the job. In the same way, there are applications of laser cutting
and water jet cutting 2D objects out of metal sheets for which the
Delta kinematics might be useful. However, in these applications
large rectangular horizontal working areas are usually needed
(typically 1.5 x 3 meters), which could make a Gantry type of
parallel manipulator more competitive. For other applications,
such as assembly of components for automotive transmission
lines, a cylindrical workspace may match the tasks better and
for these applications a 6 DOF robot is usually needed. In Figure
2 some examples are given of kinematic requirements from the
applications in figure 1 concerning motion type and the number
of degrees of freedom.

3 Synthesis of PKM Structures for Robot Applications

This is the most important section of this paper (from the author’s
point of view) since new PKM structures must be synthesized to
obtain a broader use of parallel robots in industry. Systematic
topology methods may be needed and the purpose of this section
is to show that there still exist unused parallel structures with
high industrial potential.

When searching for a new PKM structure or when analyzing
an already discovered PKM structure, the motion type and the
number of DOF needed for the applications under investigation
are basic kinematic features that must be determined (Figure 2).
It is then a good strategy to start looking at the motion type
since the motion type will give useful constraints on the actuating
structure, reducing the number of possible PKM topologies.

3.1 Synthesis of Actuating Structures for Positioning

To be able to synthesize parallel kinematic structures for posi-
tioning with Scara, Gantry and antropomorphic motion patterns
according to the application demands in Figure 2, one way is to
start with parallel actuating structures giving rotation symmetric
(for Scara and antropomorphic robots) and Cartesian (Gantry
robots) motion patterns. How this can be made in the 3 DOF
case (for positioning) is shown in Figure 3. For the parallel
actuation in the rotation case, 3 arms are actuated independent
of each other around a central column. The actuators, which
are mounted on the central column, drive the actuating arms,
mounted on horizontal bearings. For the parallel actuation in the
Cartesian case, 3 actuating platforms are independently driven
along 3 linear tracks.

3.2 Synthesis of Actuating Structures for Orientation Con-
trol

As can be seen in Figure 2, usually more than 3 DOF are needed.
To achieve a 4th DOF with full rotation capability, a parallel
independent transmission link in addition to the positioning links
is used in the Delta robot case [1]. This link must transmit
torque and does not have the same performance as the rest of
the Delta structure and can be looked upon as a transmission
link for rotation. In the H4 robot structure [2] the same link
structure is used for the 4th DOF, but a gear transmission is
used on the platform to convert and amplify a linear motion to
a rotational motion. This solution does not give infinite rotation
capability and the torque amplification in the gear will reduce
the orientation performance in comparison with the positioning
performance. The most promising way to obtain a 4th DOF
seems to use a redundant actuation [3]. However, the need
of an extra actuator and a redundant link will increase cost
and manipulator volume. Thus, it seems very difficult to find
parallel structures giving full orientation performance as for the
serial robots used in industry today. It will then be even more
difficult to find PKM structures with 5 or 6 DOF with the same
orientation capability as for serial robots. Of course, there might
still be 4 DOF - 6 DOF parallel structures not discovered and
searching for such structures and also developing systematic
search methods would be very interesting. However, with the
present experience of the orientation capability of known PKM
structures, it seems in the general case necessary to separate the
rotation generating structure from the positioning structure and
connect these structures in series. Such a configuration makes
modularization easier since a basic positioning PKM can then be
combined with different wrists for different applications. These
wrists may then be either serial or parallel [11] and in the parallel
case new structures with improved orientation performance are
needed.
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Figure 3: Examples of parallel actuating arrangements to obtain positioning PKM motion patterns similar to the serial manipulators used
today.
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Figure 4: Examples of useful combinations between 6 link parallel structures (A - G) and the actuating parallel structures (I and II) from
Figure 3.

3.3 Synthesis of Parallel 6 Link Structures for Positioning

Using the modularization approach discussed above, the next
step is to find the parallel structures between the actuating arms
or linear tracks in Figure 4 and the manipulated platform, on
which a wrist could be mounted. These parallel structures should
then be selected to obtain the potential advantages of a parallel

kinematic robot as listed on the left in Figure 1.

To obtain the lowest possible moving mass in relation to the
stiffness of the robot structure, there should be at least 6 links
between the actuating structures and the manipulated platform.
The links should be configured to transmit only axial forces, just
like the struts of Hexapod, Delta and Hexaglide [3] structures.
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Figure 5: Robot structures when combining the actuating
structure I with the link structure A (upper figure) and the
actuating structure II with the link structure C in Figure 4 (lower
figure). In the same way the other useful combinations in figure
4 can be assembled to study the kinematic properties of the
resulting 3 DOF manipulator.

This will also give high acceleration potential and it will be easier
to obtain high dynamic and static accuracy.

Figure 4 shows some useful combinations between 6 link
structures and the 2 actuating parallel structures in Figure 3.
Each link has a 3 DOF spherical joint in each end and the links
are clustered in different configurations for 3 DOF (positioning)
manipulation of the platforms. The links are mounted either with
a 2D (A - C) or a 3D (D - G) pattern on the manipulated platform
[5, 6].

Figure 5 shows examples of assembled positioning robots
for two combinations in Figure 4. The upper combination (IA)
gives a motion pattern as for a Scara robot while the lower
combination (2C) gives a workspace like a Gantry robot but with
a motion pattern more like an antropomorphic robot.

3.4 Synthesis of Parallel Structures with less than 6 Links
for Positioning

Even if 6 link structures, where the links only transmit axial
forces, are optimal from the mass/stiffness point of view, there
may be design advantages by using fewer links between the
actuating structure and the manipulated platform. This means
that at least one link will have to transmit bending or twisting
and a manipulator design can be made by combining different
link types [7, 8], for example such link types as shown in figure
6.

In Figure 6 the number of DOF indicated (in parentheses) for
each link type tells how many DOF constraints the link type will
impose on the moving platform. For example, link type a3 will
give 3 DOF constraints by transmitting bending torque in 2 radial
directions and compression/expansion force in axial direction.
When a cardan joint is used as in a4 - a6 and b4 - b6, the links
will also constrain 1 DOF by transmitting twisting torque. The
link type a8 will impose 5 DOF constraints and can thus only be
used in a 2 DOF manipulator. In the link types b2 - b8 the DOF
transmitted by the compression/expansion force is disabled by a
linear joint, which will, however, transmit twisting torque. In b2
- b8 the linear joints can be replaced by rotational joints having
the rotation axis either in parallel (not useful for b2 -b3) or with
an angle relative the axial link direction.

When not only the link type a1 in figure 6 is used, a way to
find useful PKM structures using other link types is to find link
types that will take over the DOF constraints of two or more of
the links of type a1. One example of this is shown in figure 7,
where a 6 link structure is transformed to a 3 link structure.

3.5 Adding Passive Parallel Links to the Structures

From a stiffness/mass point of view, especially when using
carbon epoxy struts in the links, it is an advantage to find
structures as in Figure 7, where no torque will appear in the
link struts. However, when the acceleration performance is not
essential and heavy stiff steel struts and large bearings can be
used, solutions with cardan joints may satisfy the application
needs. An example of such a structure is shown in Figure 8.
This figure also exemplifies the possibility of having a passive
connection to the moving platform to constraint a number of
platform DOF without having the link connected to any actuating
structure. From a product cost point of view a passive link may
be a disadvantage, but simultaneously the extra passive links can
be used to carry cables, mechanical transmissions etc. to the
wrist and tool equipment. In principle more than one passive
link can be used and in principle all the link types in Figure 6
can be used as passive parallel links.

3.6 Synthesis of Parallel Structures for Orientation Control

When we adopt the modularization principle mentioned in 3.2
(meaning that one positioning parallel kinematic robot is con-
nected in series with a structure responsible for the orientation
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Figure 6: Link types that can be used for the synthesis for new parallel robot structures with working envelopes and motion types as for
the serial industrial robots used today.
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Figure 7: An example of how the a1 link type in figure 6 can
be replaced by other link types (a2, a3) to obtain the same
kinematics. The identical transformation can of course be made
for the Gantry actuator structure in figure 5.

 a1
1 Constraint

a1
1 Constraint  a1
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 b6
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Figure 8: An example of how a link (type b6 according to Figure
6) transmitting a torque can be used to form a PKM. This is an
example of the use of an extra passive link between the moving
platform and the base of the robot.
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Figure 9: An example of a 2DOF parallel kinematic wrist to be
used for tool orientation. The mechanism is simply a 2 DOF
version of the upper positioning structure in Figure 7. The
dashed lines in the figure indicate the 2 axes, around which the
tool is rotated. This structure could be built with 3DOF by a
rotation transmission (for example with a cardan joint) to the
manipulated platform.

control) it is interesting to find out if there are any parallel
structures for tool orientation, which could compete with the
simple wrist structures used in industrial robots today. Two
examples of parallel wrist structures, which could be competitive
for applications where very fast 2 DOF tool orientation is
required are shown in Figures 9 and 10.

Orientation generating parallel structures, much like posi-
tioning structures, should also be 6 link structures to optimize the
stiffness/mass ratio. Looking at Figure 4, it is easy to conclude
that candidates could be found with the link structures B, C,
F and G. Thus, Figure 9 shows a variant combining a 2 DOF
version of the actuating structure I in Figure 4 with the link
structure B in the same figure. Relaxing the stiffness to mass
requirement, a 6 link structure could be abandoned and a much
simpler 2 DOF orientation generating version can be made with
the same kinematics, as exemplified in Figure 10.

It should be emphasised that parallel as well as serial struc-
tures can be actuated via transmission links (as with the fourth
axis of the Delta robot). Such transmission links will usually
lower the mass of the positioning platform but simultaneously it
is difficult to maintain the stiffness and the dynamic accuracy as
in the case when the actuator is directly coupled to the orientation
generating mechanism.

Figure 10: An example of a simple parallel 2 DOF wrist
structure, which is not of the 6 link type, but which has the same
kinematic features as the structure in Figure 9. The dashed lines
in the figure indicate the 2 axes around which the tool is rotated.

Redundant DOF: Bearing

with vertical rotation axis

Extra link

Figure 11: A parallel robot structure where 1 redundant DOF has
been added to the actuating system and where one extra link has
been introduced to constrain this extra DOF. It should be pointed
out that the links connected to the lower and middle actuating
arms could be replaced by a2 links according to Figure 6.

3.7 Adopting Redundancy With Respect to the Number of
DOF

Besides using different types of links and using passive links,
there is also the possibility to add DOF to the actuating structure
or to the manipulated platform [9] and compensating these extra
DOF with a corresponding set of constraints with extra links
or with links constraining more DOF. Thus, Figure 11 shows
an example where one redundant DOF has been added to the
actuating system and Figure 12 an example where one redundant
DOF has been added to the manipulated platform.
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Redundant DOF:

Bearings with vertical rotation

axis

Extra link

Figure 12: A robot structure where 1 redundant DOF has been
added to the manipulated platform and where one extra link has
been introduced to constrain this redundant DOF.

Upper vertically swingning

arm rotated

by middle arm.

Figure 13: A semi-parallel actuating structure with serial
kinematics between middle and upper actuating arms. In the
lower part of the figure some link structures, which are useful
together with this actuating structure.

3.8 Relaxing the Demands on Full Parallel Structures

It should be pointed out that a pure parallel structure is not
always optimal and it could sometimes be worth while to be less
stringent in the PKM synthesis and introduce some serial parts
in the structures. For example, very good performance can be

Figure 14: A semi-parallel actuating structure with serial
kinematics between the 2 couriers at the left linear track. This
is also an example of the possibilities to mix linear tracks with
swinging arms to achieve useful kinematic properties.

achieved by mounting the upper actuated arm in the actuating
structure I in Figure 4 in series with the middle arm, as shown in
figure 13. Figure 13 also shows which 6 links structures that will
give useful motion pattern and workspace for this type of partly
serial actuating system. In Figure 14 it is shown that introducing
a serial part in the actuating structure can also be useful for a
gantry type PKM, whereby only 2 linear tracks are needed for 3
DOF positioning. This figure also exemplifies the possibility to
mix rotating and linear actuating structures.

3.9 Concluding Remarks on the Synthesis of Parallel Robot
Structures

It is well known that there are thousands of possibilities to
build working PKM structures, but most of these will not fit
into the requirements for flexible industrial automation. It is
therefore very important to have constraints in the search for new
structures. Simultaneously, it is important to have design rules
to follow and to know basic structural possibilities. Thus, this
section has pointed out some important issues to consider when
synthesising parallel mechanisms for flexible automation. These
issues are summarised in figure 15, which could be a starting
point for the development of a more systematic topology method
for PKM synthesis.

4 Design Optimization of Parallel Kinematic Mechanics for
Robot Applications

In the previous section the important and difficult problem of
PKM synthesis have been discussed. When a new structure that
seems to be suitable for a target application has been found,
then a mechanical design optimization procedure will take place,
which will contain several interesting problems.

4.1 Simulation of Application Tasks

The first step in the mechanical design optimization procedure
should be to analyze the application and set up a robot CAD
environment to be able to simulate a robot together with the
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Figure 15: Examples of different issues that have been put
forward as important to be aware of when synthesising a suitable
PKM concept for a given application.

equipment and the process that the robot will serve. This will
give the demands on the robot with respect to workspace, number
of DOF, accessibility, collision avoidance, singularity avoidance,
motion pattern etc. Knowing these kinematic requirements,
suitable PKM concepts may be selected and tested by simulation
of the real robot tasks. This means that kinematic models
are needed for all the tentative parallel kinematic robots and
that these models must be included in the CAD simulation
environment, for example Robcad, Envision or Robot Studio.

These simulations of the application tasks should then be
used in the following steps of the robot optimization. When
dynamic optimization is made, usually other simulation tools are
needed (ADAMS, DADS etc.) and then the trajectories obtained
from the application task simulations can be used as input to the
dynamic model simulations.

4.2 Optimization of Robot Kinematics

When suitable robot concepts have been selected by kinematic
task simulation, the next step is to find out which of these
selected concepts produces optimal kinematic performance for
the application. To do this, the kinematics of each selected
PKM structure should be optimized with objective functions
such as workspace, accessibility, motion pattern, kinematic error
propagation and kinematic error identification performance (for
best possible robot calibration). Some of these object functions
could of course also serve as constraints in the optimization
process. The design parameters for the optimization could
be actuating arm lengths, distance between actuating arms,
distance between linear tracks, lengths of linear tracks, link
lengths, joint angle ranges, manipulated platform dimensions,

backlash in components, manufacturing tolerances and assembly
accuracy. How to make this multi-objective optimization is a
very important robot design issue. One approach is to start with
manually optimized kinematics and then tune the structure by
means such as genetic algorithms for global optimization and
gradient searching methods for local optimization. Some design
parameters and objective functions/ constraints for kinematic
design optimization are summarised in Figure 16.

4.3 Optimization of Rigid Body Dynamics

The next step in the design should be to optimize the rigid
body dynamics. The input to this design could be a simplified
FEM model of the structure. However, since it is often possible
to obtain a good approximation of a parallel robot structure
with beams, tubes and plates, FEM modeling could wait until
a later more accurate stage in the design process. Just as for
the kinematic optimization, rigid body optimization also has
multiple objectives. Examples of rigid body objective functions
are robot max acceleration and robot max speed while the torque
and forces on bearings and the torque and forces in structural
elements as arms, links and manipulated platform could be
handled as constraints. Design parameters are actuator torque
and forces, arm and link dimensions and geometry, arm and link
material, joint mass, platform dimensions, platform material etc.
For this design, the most demanding robot motion trajectories
must be found and to make a safe optimization the objective
functions should be studied for different trajectories in different
parts of the workspace. This is a very time consuming task,
especially since the maximum acceleration and speed and the
maximum load on different components and structural elements
will be different for different motion types in different parts of
the workspace. This is of course a very challenging R&D topic
and just as for the kinematic optimization, one could start with
a design relying on the experience of a skilled designer and then
tune the design by different optimization methods. In a long
term perspective one could also think of using some kind of
more general method for topology optimization. Some design
parameters and objective functions/constraints for the rigid body
optimization can be found in Figure 17.

4.4 Optimization of Robot Flexibility

In the optimization of the rigid body dynamics as described
above, the approximation is made that the flexibility of the robot
does not affect the rigid body optimization. This is of course
not true, but in a first design iteration this separation of rigid
body and elastic body design could be a way to make the design
process easier to handle. One could argue that a first pure
rigid body optimization is made to learn the desired actuator
performance to fulfill the acceleration and speed demands with-
out exceeding the fatigue limits. In the flexible body design
optimization it is then the objective to find out if the pure rigid
body design must be tuned to obtain the stiffness objectives
given by the application. Thus, such objective functions as
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Figure 16: Some design parameters (in cursive) and design objective functions (or constraints) for the optimization of the kinematics of
a parallel kinematic robot.
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Figure 17: Some design parameters (in cursive), design objective functions and constraints for the optimization of the rigid body
dynamics of a parallel kinematic robot.
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Figure 18: Some design parameters (in cursive) and design objective functions and constraints for the optimization of the flexible body
dynamics of a parallel kinematic robot.
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robot stiffness and robot eigenfrequencies must be used and
the relation between the rigid body properties of the robot
components and the stiffness of the robot components must be
known. To run the flexibility optimization the rigid multibody
dynamic models must be expanded to also include the stiffness of
bearings, arms, links and the manipulated platform. This model
with flexibilities is also needed for the compensation of static
position errors caused by gravity. When a gear box or another
transmission unit is used, the stiffness of this component should
also be included in the model, as summarized in Figure 18.

4.5 Optimization Iteration Sequence

In summary, the mechanical design of a parallel kinematic robot
for a given application could be divided into 4 steps:

1. Analyze the application requirements and select the optimal
concepts with respect to kinematic requirements.

2. Optimize the parallel kinematic structures to find a globally
optimal structure.

3. Optimize the rigid body performance.

4. Optimize the elasticity performance.

In the same way as mentioned for steps 3) and 4), an iteration
is needed between all the steps to find an optimal robot for the
tasks defined by the application. Usually, a general purpose robot
is needed from robot business point of view and the optimization
has to be made for a spectrum of applications. One problem to
then solve is finding applications that are similar to each other
with respect to the performance potential of the parallel robot
structure that has been selected. This problem also relates to
the robot modularization issue. Probably, parallel structures will
be easier to modularize than serial robot structures because of
simpler components with smaller dynamic interdependence.

5 Selection of Components for a Parallel Kinematic Robot

In the mechanical design optimization process discussed in
section 4 above, one important issue is to select the most suitable
components for the parallel kinematic robot. A first component
discrimination is of course made when the parallel robot concept
is selected. However, also in the other design steps there will be
opportunities to select between different component solutions.

5.1 Kinematic Requirements on Components

In the kinematic optimization it is important to find out the
requirements on the working range for the joints. If, for example,
large working angles are needed in a 2 DOF joint, then a cardan
type of joint may be needed, but if large joint angles are needed
only in one direction, then a ball and socket joint can do the job.
The kinematic analysis also includes the kinematic error prop-
agation and the identification performance. If it is important to
design the structure with low sensitivity to temperature changes

in the robot environment, then the components giving the highest
error propagation and the lowest calibration accuracy should be
made of a material with a low temperature coefficient (as for
example carbon reinforced epoxy). Also the error propagation
and the identification performance with respect to backlash in
actuators and joints must be analyzed kinematically, which may
put demands on these components and even make it necessary to
exclude certain types of components. The error propagation and
identification performance analysis will also give information on
the demands on the accuracy needed for the manufacturing and
assembly of the components and the robot.

5.2 Dynamic Requirements on Components

In the rigid and flexible dynamic design optimization, the dy-
namic requirements on the components and the robot are ob-
tained and a final component selection should be made. Starting
with the actuator selection, the first question is if a direct drive
(linear direct drive or a ring motor) is needed. This selection
depends on the requirements on the stiffness and, as pointed out
for the kinematic analysis, also on the demands on maximum
allowed backlash (more generally lost motion). At this stage
of the design the cost optimization will also enter the design
procedure and the high cost of a direct drive solution must be
weight against the performance/cost ratio for a drive with a gear
box or band/screw transmission. If it is necessary to go for a
low cost solution, as used in industrial robots today, backlash-
free highly pre-stressed transmissions may be needed, which will
however give the drawback of adding friction. Some of these
problems with a low cost actuator solution can be compensated
for by the servo, and the optimization problem will thus be
extended to cover also the servo optimization, which will be
covered in the next section. As a consequence the actuator
selection could have to wait until the servo is designed and
optimized.

Also of significant importance for the dynamic design is the
selection of the bearing technology for the actuating structure
and for the link joints. Important bearing features besides the
working range are stiffness, load capacity, friction and backlash.
For high stiffness and high load capacity, pre-stressed ball
bearings or roller bearings may be used, which will, however,
give high bearing friction. Moreover, when these bearing
concepts are used in the link joints, the moving mass will become
high, giving high load in the structure for applications needing
high acceleration and speed. In applications with these high
motion demands it may then be better to implement the joints
with low weight ball and socket bearings. This means that
the bearings cannot be bought off shelf, but a custom design
must be made, whereby the best material combination in the
sliding interfaces of the bearings must be found. It might also
be needed to have an interface medium (air, oil) to obtain low
friction and long lifetime of the joints. It should be pointed out
that the passive joints of a parallel kinematic robot are the key
mechanical elements that distinguish it from a serial robot.
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Figure 19: Some examples of component technologies to investigate during the design optimization of a parallel kinematic robot.

In addition to the actuator and bearing components, the
arms, linear tracks, links and the manipulated platform must
also be optimized. Linear tracks may be selected off the shelf,
but arms, links and manipulated platform must be customized.
For the dynamic optimization the weight/stiffness relation is of
course most important and for this both the geometry and the
type of material must be considered. What is also important is
the technology and methods used for joining the components. If
for example carbon epoxy is used, then gluing may be favorable,
but a lot of experience is needed to optimize this process to the
demands on stiffness, load, accuracy and lifetime.

Some of the component technologies important for a parallel
kinematic robot are summarized in Figure 19.

6 Drive System and Control Optimization

The mechanical robot optimization cannot be made independent
of the drive system design and the controller design. Thus, the
rigid body dynamics optimization will give requirements on the
actuator performance and it will be necessary to find drive system
solutions that will satisfy these requirements.

6.1 Drive System Design

For the drive system optimization it is not enough to calculate the
values of the maximum torque needed, but it is just as important
to know the duty cycle to be able to calculate the thermal
demands on the actuators. Thus, applications such as pick and
place and 2D laser and water jet cutting will usually run with high
frequency and the nominal motor torque and the nominal drive
current must be designed at a higher level than for applications
such as assembly and measurement. To be able to optimize
the drive system with respect to the thermal situation, robot
programs having the highest frequency for the applications under
consideration must be simulated using the rigid body model. If
the demands on the cooling then become too high, there could be

a need to make a redesign of the mechanics. However, compared
with a serial kinematic robot, the dependence between the rigid
body design and the drive system design is smaller since the
actuators do not contribute to the moving mass of the robot.
For optimal use of the actuators, a real time running thermal
model should be used together with the rigid body model and
drive system model to calculate the thermal load on the actuators.
Then it is possible to make on line tuning of the acceleration
and the speed of the robot to avoid overheating. This model-
based control scheme will adapt the actuator performance of
the PKM to the actual tasks, giving shorter cycle times and a
more cost efficient drive system design. The same idea can be
used for on line fatigue control. Then the dynamic models are
extended to contain critical interfaces, in which force and torque
are supervised. The force and torque levels of the dynamic
models are then supervised by the controller to avoid passing
the fatigue limits given by the lifetime of the PKM. These
adaptive control schemes are good examples of the need of an
optimization including both mechanical and control design.

6.2 Static Control

Of utmost importance is to design control schemes that are
optimized for the mechanical design. It is also important to
design the robot structure such that it will not be too difficult
to control. For the static control it is necessary to compensate for
errors caused by the deviations from a nominal kinematic model
and errors induced by sagging of the structure due to gravity. For
these compensations a kinematic error model is needed as well
as the flexibility model discussed earlier. Since the kinematic
errors are different for each individual robot, identification of
the errors must be performed. This identification may consist of
measurements of critical components before robot assembly and
then a kinematic identification of the whole robot structure to get
the errors not measured in advance. The difficulty level for the
identification will depend on the measuring method used. If an
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Figure 20: Controller structure overview for model-based control of a parallel kinematic robot. The controller design may start with
nominal models, but to achieve maximum robot performance, deviations from nominal models must be identified, especially for the
kinematic and elasticity and friction models. To obtaind shortest possible cycle time, the drive system should be adapted to the actual
duty cycle and mechanical stress levels.

advanced 6 DOF measurement system is used, the identification
will be easier than if, for example, a 1 DOF measurement system
such as a double ball bar is used. It is certainly interesting to
find methods to optimize the identification of the robot structure
under investigation with the constraints given by the available
measurement system.

6.3 Dynamic Control

The compensation of static errors can be made in such a way that
the programmed and interpolated positions are moved, which is
not too difficult. It is much more difficult to handle the dynamic
effects of the parallel kinematic structure to obtain low dynamic
path errors as well when large acceleration and acceleration
derivative (jerk) are needed. To obtain high performance control
with respect to cycle time and accuracy, model-based control
is needed. Of the models already mentioned, the controller
needs the rigid body model, the flexibility model and the drive
system model. Moreover, a friction model is needed and the
quality of the control will of course depend on the accuracy of
the models. The rigid body model and the drive system model
are usually well defined for a robot type, while the flexibility
model and the friction model will usually be very difficult to
predict. Moreover, these models may be different for different
individual robots and therefore the model parameters must be
identified. For the flexibility model, black box or grey box
identification is made (see Identification toolbox in Matlab)
by exciting the robot with different frequencies (chirp, PRBS,
discrete sinusoidal, white noise etc.) to find eigenfrequencies
and damping parameters. For the friction, special movements

are used to identify at least the Stribeck, Coulomb and viscous
friction parameters, which may differ at different positions of
the robot and in different motion directions. The control loops
may be designed using such optimization methods as LQG and
H∞ and the servo may make use of model-based feed forward
control, computed torque control, MIMO control, input shaping
and parameter scheduling. The accuracy of the models will be
limited, so to improve the control performance further the control
loops can be extended to contain such sensors as encoders,
accelerometers, strain gauges and force sensors in the arm and
link system. Some of these sensors could be used for redundant
measurements to obtain on line parameter error identification and
compensation. The sensors in the mechanical structure can also
be used to increase the stiffness, bandwidth and accuracy of the
control [12]. Moreover, non-model based control methods such
as iterative learning control (ILC) can be adopted to decrease the
control errors below the level determined by the accuracy of the
dynamic models. It could also be possible to use adaptronics -
using high bandwidth actuators and sensors in the robot structure
to compensate for mechanical deflections.

Figure 20 gives an overview of a model-based control
system useful for parallel kinematic robot control. Advanced
control will do a lot for the robot performance, but simultaneous-
ly it is very important to design the robot in such a way that the
control will not be too difficult. This means that the mechanical
eigenfrequencies should be as high as possible, eigenfrequencies
should not be too close to each other, friction should be kept as
low as possible etc. Thus, it is important to have the control
requirements in consideration when the mechanical optimization
is made. For this a simulation environment is needed, where
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Figure 21: Possible development process for a PKM, as seen
in an industrial perspective. Each box contains an optimization
activity as described in this paper and to achieve a global
optimization of the PKM product, iterations are needed between
the different activities as shown by the arrows.

control developers meet the mechanical developers in an early
stage of the robot development to optimize the mechanics with
respect to the control requirements. In such an environment it
will also be possible to get accurate performance predictions,
which is very important to get industry interested in starting
product development.

7 Summary

The purpose of this paper is to give an overview of the need of
PKM research as seen in an industrial perspective. It is then
important to stress the fact that at first when all the steps in the
robot design optimization are made, as summarised in Figure
21, the industrial potential of the concept can be judged. This
means that besides new methods to synthesize parallel structures,
new methods are also needed to make a fast and accurate robot
optimization [10] to such a level that the risk of starting a high
cost product development will be low. The most difficult topic
then is to predict the control performance. Next to the synthesis
of new parallel kinematic structures, the most important issue
seems to be the issue of automatic control. More than likely,
the only way for the PKM technology to compete with the very
rigid and accurate Cartesian machines used today for such high
performance applications as machining and laser cutting, is to
make use of advanced model based control, and if needed, add
more sensors and also learning control concepts.

Summing up, below is a proposal for a list of the most
important research topics from an industrial point of view (in
priority order):

1. Methods and tools for a systematic synthesis of new parallel
kinematic structures.

2. Advanced automatic control technology for the control of
parallel kinematic robots (including different sensor loops
and adaptronics).

3. Methods and tools for fast and accurate parallel kinematic
robot optimization and performance prediction (optimiza-
tion and prediction by virtual prototyping: application re-
quirements, kinematics, dynamics, drive system, controller)

4. Further development of bearing technology for link joints

5. Methods for adaptive thermal and fatigue control

To succeed with this research, close collaboration is prob-
ably needed between researchers from different fields such
as automatic control, applied mathematics, computer science,
kinematic and dynamic modelling, system identification, opti-
mization, sensor technology, drive system technology, material
technology, tribology and mechanical design. There are many
interdisciplinary research topics just as for research in serial
robotics, but the requirement on the research depth is probably
higher since the target of the parallel robots are applications
needing much higher performance than can be obtained with the
industrial robots used today.
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positionnement d’un élément dans l’espace, 1985. Patent
CH 672 089.

[2] F. Pierrot, F. Marquet, O. Company, and T. Gil. H4 parallel
robot: Modelling, design, and preliminary experiments.
In Proceedings of 2001 IEEE International Conference on
Robotics and Automation, Seoul, Korea, May 2001. http:
www.lirmm.fr/rdc/pm/papers/lirmm icra2001.pdf.

[3] F. Marquet, S. Krut, O. Company, and F. Pierrot. ARCHI,
a redundant mechanism for machining with unlimited
rotation capacities. In ICAR 2001, Budapest, August 2001.

[4] M. Honegger, A. Codourey, and E. Burdet. Adaptive
control of the Hexaglide, a 6 dof parallel manipulator. http:
www.ifr.mavt.ethz.ch/publications/honegger97a.pdf.

81



[5] T. Brogårdh. Design of high performance parallel arm
robots for industrial applications. In Proceedings of the
Symposium Commemorating the Legacy, Works, and Life
of Sir Robert Stawell Ball Upon the 100th Anniversary
of A Treatise on the Theory on the Screws, University of
Cambridge, Trinity College, July 9-11, 2000.
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Abstract: One of the main advantages of parallel robots is
that they can be appliedas modulesin long-reach (snake-like)
robotic manipulators enablingrobotic automationof unhealthy
work in confinedspaces. However, before parallel kinematic
robotic modules(PKRM’s) can be widely usedin such appli-
cationsa variety of technological tasksmustbe accomplished
such asdesignissues,precisemodelbasedcalibration,modular
control and processcontrol. It is the purposeof this paper to
addressour workwithin each of thesetasksaimedat developing
robust reconfigurable PKRM’s for long reach weldingapplica-
tionswithin e.g. shipbuilding.

1 Introduction

The industrialusageof the classical5 or 6 axis robotshasnow
maturedover 20-30years. However, the useis almostalways
limited to situationswherethebaseof therobotis eitherfixedor
mountedon a gantrywith easyaccessfrom above. This leadsto
severedemandson the productionsystemasthe itemsthat the
robot is supposedto processmustbe moved to the robot asfor
examplein the assemblylines of the automobileindustryor in
the panellines in shipbuilding. This leadsagain to severecon-
straintsonthelogisticsof theproductionprocess.In many poten-
tial applications,it wouldbedesirablefor therobotto havealong
horizontalreach,enablingit to creepinto confinedareas,suchas
”rooms”closedfromabove. Theusageof robotsin suchconfined
areaswheretheworkingenvironmentis oftenveryunpleasantis
impossiblewith theclassicalrobot installations.Thereis there-
foreastrongdemandfor new typesof industrialroboticsystems
wheretherobotshave thefollowing new properties:� Haveamuchlongerhorizontalreach� Canhandletasksin confinedareas� Are lightweightandmovable

� Are reconfigurable

Rather than approachingthesenew robotic systemsas a few
typesof new roboticmanipulators,webelieve thatthey will bea
productof increasedreconfigurabilility, in theway that thesys-
temswill consistof robotic modules(subunits) which can be
pluggedtogetherin variousways.Eachmodulehasit’sown em-
beddedcontrollerwhichis linkedto anetwork whenthemodules
areassembledinto a manipulator. Themanipulatorcanbespec-
ified anddesignedin advance,basedon informationaboutavail-
ablemodulesandthetasksthemanipulatoris goingto perform.
Anotheradvantageis thatif onemodulefailsduringoperation,it
mayquickly bereplacedwith anothermoduleof a similar type.
The moduleswill often be subsetsof a long robotic arm, but
they may alsobe moving platforms,suchas fork-lifts or other
vehicles.Oncethetaskis accomplished,themodulescanbere-
configuredfor thenext task.

In this paper, we will discussthe reachasbeinghorizontal
(perpendicularto thegravitationalforce). Therearetwo reasons
for this choice.First,horizontalreachenablesa new rangeof ap-
plications.Second,horizontalreachis theworstcaseapplication
for designers,becauseof thetorquedueto gravity is at its max-
imum. Thus,all our resultsfor our PKRM’s at givenhorizontal
reachhold for thesamereachin otherdirections.

Giventhedesirefor a longhorizontalreachandlow weight,
it is obviousthatPKRM’swill beverysuitableascomponentsin
suchroboticsystems.Therehasbeenalot of researchin connec-
tion with mechanicaldesign,kinematics,calibrationanddynam-
icsof asinglePKRM consistingof afixedplatformandamoving
platform which areconnectedtogetherby morethanonekine-
matic chain. However, therehave beenonly few studieson the
problemsconnectedwith usingthePKRM’s ascomponentsin a
modularmanipulator. Thisleadsto new problemswithin moreor
lessall theresearchareaswithin parallelrobotsandalsoto some
additionalproblemsconcerningembeddedmodularcontrol. It is
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thepurposeof thispaperto addresstheseproblemsandto present
our solutionsandhow they have beenincorporatedinto a proto-
typeof aPKRM.Thepaperis organizedin thefollowing way: In
section2 theproblemswithin mechanicaldesignis discussed.In
section3, we discussproblemswithin kinematicsandin section
4 wediscusstherelatedproblemswith calibration.Bothsections
give a somewhat detailedreview of the literature. Much of the
resultsarealsosummarizedin (Merlet00). In section5, we dis-
cussthedevelopmentof anembeddedcontrollerfor aPKRM. In
section6, we discussthe incorporationof thePKRM prototype
into alongreachmanipulatorthatis beingdevelopedfor welding
in confinedareasin shipbuilding. Section7 concludesthepaper
with sometopicsfor futureresearch.

2 Mechanical design and implementations

In this section, we describeour design considerationsand
choicesusedin theimplementationof ourPKRM prototype.Due
to thedesireof highmodularity, whichmaybeachievedby plug-
gingsmallPKRM’swith few degreesof freedomtogetherin lin-
earchain,wehavedecidedto only consider3DOFmodules.One
shouldthusview thesemodulesasrathersmallbendingmodules
in a ”snake” like robot ratherthanmoduleswith high longitudi-
nalextensionpossibilities.

Choice of kinematic topology

Themostpopular3DOFPKRM kinematictopologystudiedfor
usein longreachapplicationshasbeentheVGT(VariableGeom-
etryTruss).AmongthesetheDoubleOctahedron(DO) hasbeen
the mostappealing(Salerno94). Closeto industrialprototypes
have beendesignedanddemonstratedat NASA Langley andat
OdenseSteelShipyard Ltd. Thesedesignshave revealedma-
jor practicalproblemswhendesigningDO-VGT’s(Jakobsen98).
Themainproblemsareexpensive,complicatedjointsanda large
reductionin workspace(WS) due to mechanicallimitations in
practicaljoint- andactuatordesign.

To overcome these limitations in WS the Double Tri-
pod (DT) wasexaminedasan alternative mechanicalstructure
(Canfield97).TheDT structureis basicallyaDO-VGT structure
wheretheactuatorshavebeenremovedfrom thesymmetryplane
of the mechanismandconsequentlythe mathematicallyspheri-
cal jointsat thesymmetryplanecanbemechanicallybuilt outof
3 simple rotationaljoints (roll-pitch roll). Whenusing the DT
structureasa modulein a long reachmanipulatorit is important
to minimizethetorqueloadsin all members.For this reasonour
designis asfaraspracticalpossibleatruss-structureandreferred
to astheDoubleTripod VGT (DT-VGT).

Design criteria

Themainaim in themechanicaldesignof theDT-VGT hasbeen
to work on thefollowing designgoals:� Increasetheworkspace

� Decreaseweightandsize� Increasestiffness� Minimize costs� Increaseaccuracy

A severecontradictionin thedesigngoalsexistsandthebest
compromisehasto bechosenbasedon thedemandsof thespe-
cific application.

Workspace optimization

Oneof the main parametersusedin the designof the DT-VGT
hasbeenthe ratio betweenthe heightof the trianglecreatedby
therotationaxesof the leg andthewidth of thetrianglecreated
by therotationaxesof thedistalplate(SeeFigure1). Theratio is
referredto astheH/W-ratio. This ratio hasa greataffect on the
WS.

Figure1: Thedistalplateandtheleg in a DT-VGT design

The advantagesgained by shifting from the DO-VGT to
the DT-VGT canbe demonstratedby comparingthe maximum
achievableanglebetweenthebaseplateandthedistalplate.Fig-
ure 2 shows the maximumachievable anglebetweenthe base
plateandthedistalplatefor differentH/W ratiosfor acertainac-
tuatorstroke. ThecurrentDT-VGT prototypehasaH/W ratioof
0.75.Thishasprovento beareasonableratio in practicaldesign.

With the chosenjoint limits and H/W ratio the maximum
anglebetweenthedistalplateandthetop plateis

�����
. It should

be noticedthat this angleis limited to only � ��� in known DO-
VGT designs.

Forces

Dueto thejoint limitations,theDO-VGT’shaveneverbeenoper-
atingcloseto singularitiesor extremepositionsof thelegs. This
is not the casewith the DT-VGT. The larger WS requiresthe
mechanismto operatecloseto singularitiesand extremeposi-
tions,andthedesignhasto copewith the internalforcesoccur-
ring in thesepositions.Forcecurveshavebeenexaminedandan
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Figure2: Max. anglebetweenfixedandmoving plateasfunction
of theH/W ratio

examplefrom thecurrentprototypecanbeseenin Figure3. The
curveshave beenproducedby applyinga force-couplesystem
to the distal plateandcalculatingthe forcesin the joints when
moving all 3 legsof themechanismfrom onelimit to theother.

Figure 3: The figure illustratesthe forceswhen one lower leg
is moved from � � to

� � � (measuredfrom the planeof the base
plate), and the other 2 legs are in position � � . The curves for
thosetwo legsthereforecoincides.

As canbe seen,the magnitudesof the forcesincreasedra-
maticallywhenthemechanismis completelycontracted.

The current DT-VGT prototype

Thecurrentprototyperepresentsthe latestin DT-VGT develop-
ment.Theprototypeis shown in Figure4.

Thedatafor theprototypeare:� Massof Prototype:65 kg� Payload:65 kg at 500mmfrom thedistalplate

Figure4: PresentDT-VGT prototypecarryinga MitsubishiPA-
10 robot� Max angle:80 deg� Max diameter:600mm� Min diameter:425mm� Max length:945mm� Min length:688mm

TheDT-VGT is designedasa modularmechanismwith an
integratedmodularcontrolsystem.Oneof theadvantagesis that
themechanismcanbeconfiguredto fit a specificapplication.In
Figure4, the DT-VGT canbe seencarryinga Mitsubishi PA10
robotwherethePA10 robothasbeenattachedto thebasepartof
theDT-VGT andthetool of theDT-VGT is attachedto thefoun-
dation,herebyincreasingthereachof thecompletemanipulator.

3 Kinematics

The direct kinematicsproblemfor parallel robots(deriving the
poseof the moving platform given the actuatorvalues)hasre-
ceivedvery high attention.Many resultsarebasedon theelim-
ination idea (Faugere95)wherethe solutionsfor the posecan
be derived from the real rootsof a univariatepolynomial. The
eliminationprocessmayleadto polynomialsof differentdegrees
andthereforeresearchhasalsobeencarriedout towardsderiv-
ing boundsfor the numberof solutionsfor the poseas for ex-
amplein (Raghavan95) wherea boundof � � wasfound for the
Goughplatform.Thisboundwasactuallylatershown to betight
(Dietmaier98). From a mathematicalpoint of view, the results
arebeautiful,but from anapplicationpoint of view, they arenot
soimportantasthehugeamountof work mayindicate.Therea-
sonis, thatothermethodsaretypically availablein applications
for keepingtrackof theinitial poseof amovementof themanip-
ulator, sotheoftencriticizedNewton-Raphsonapproachwill be
very efficient asthe robot is thenmoving incrementallyandan
initial guesscloseto thesolutionthereforeexists.Problemswith
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the Newton-Raphsonapproachthenonly occursnearsingulari-
ties,but thesingularitiescanoftenbedeterminedin advanceand
subsequentlyavoidedby the control software to alsoavoid the
correspondingmechanicalproblemswith passingnearbya sin-
gularity. Also theproblemsoutlinedin (Innocenti95)(Wenger98)
causeno practicalproblemswith thesmallstepsizesusedin the
Newton-Raphsonapproach.

Althoughthemainfocusonkinematicsof parallelrobotshas
beenonthedirectkinematicsproblem,themaininterestin appli-
cationsis on the inversekinematicsproblem.The inversekine-
maticsproblemfor parallelrobotswith a moving platform sus-
pendedfrom a fixedplatformthroughseveral legs is essentially
atmostascomplicatedastheinversekinematicsfor aserialrobot
correspondingto eachof thelegsandseemsthereforeto needno
treatment.Theinversekinematicsproblemleadsoftenagain to a
polynomialequationdescribingthesolutions.However, in many
applicationsparallelrobotsof this typemaybemodulesinsidea
highly redundantrobot. Whenthis is thecase,this classicalan-
alyticalapproachfor theinversekinematicsis uselessasit is not
suitablefor beingincorporatedin an overall inversekinematics
for thewholerobot.

Ratherthantrying to develop andimplementsophisticated
methodsusing the analyticalapproachfor the forward and in-
versekinematics,we have consideredthesituationwithin appli-
cations. The advantagesareasmentionedthat singularitiesare
avoidedandthatthemovementis incremental.However, thereis
ademandfor thekinematicsto bemodularandthuseasilyrecon-
figurable.Moreover, it is desirableto haveaneasyto understand
userdefinitionof thekinematicswithin eachnew module.

Our chosenapproachis a straightforward generalizationof
the inverseJacobianmethodfor serial robots. Recall, that the
classicalJacobianfor serial robotsrelatesan infinitesimal joint
anglechange	�
 to an infinitesimal translationand rotation of
thetool throughtheJacobian� as���
���������	�
���	�� (1)

where 	�� is a vectorof dimension����� where � is thedimen-
sion of the spacein which the tool link canmove with respect
to the base(e.g. � �!� for planarsubstructuresand � �!� for
generalmovementsin 3 dimensionalspace).For thetypicalcase�"��� , onemaywrite 	��#�$��	&%(')	+*,�.- where	&% is thedisplace-
mentof the tool framewith respectto thebaseframeand 	+* is
the desiredtool framerotationaroundthe baseframegiven as
a signedvectoralongtherotationaxis (fixed in thebaseframe)
with lengthequalto the sizeof the rotation. This methodcan
begeneralizeddirectly to a parallelmanipulatorconsistingof a
moving platformsuspendedfrom afixedplatformthrough/1032
independentlegs.Throughoutthispaperweassumethattheway
themoving platformis suspendedsatisfiestheclassicalmobility
criteria 465879:<;>= 4@? :<A ��BDC �E��/GF12H�

�JI 4 ? :<A IKB (2)

where
4 ? :&A

denotesthe total numberof onedegreeof freedom
joints in eachleg L , B is the numberof degreesof freedomof
themoving platformwith respectto thefixedplatformand

4
is

thetotal numberof joints.
Wemaynow considertheserialkinematicsfrom areference

framein the fixed platform to a referenceframein the moving
platformthrougheachof thelegs.We thenget� = ��
 ? =.A ��	�
 ? =�A �3��MN��
 ? M A ��	�
 ? M A �PO&O<O�PO<O&O+�3� 7 ��
 ? 7 A ��	�
 ? 7 A ��	�� (3)

where 	�� is definedin the sameway asabove and � : ��
 ? :<A � is
the Jacobianmatrix for the kinematicsthroughlink L given by
the joint angles
 ? :<A � of link L . Writing ��
 ? =�A '<O&O<O<')
 ? 7 A �.- 5 

and ��	�
 ? =�A '&O<O&OQ'R	�
 ? 7 A �.- 5 	�
 , we may formally establishthe
equation,which is equivalentto Eq.(1)for serialrobotsas�@��
N��	�
S��	NTVU (4)

where 	�TVUW�YX 0U ? 7[Z =�A	�� \
andwherewe canwrite �@��
N� asablock matrix:

���
N�]�
^________` � = Fa��M

� O&O<ObO<O<O O<O&O �� ��M Fa��c � O<O<O O<O&O �O&O<OO&O<OO&O<O� O&O<O O<O<O O&O<O � � 7dZ = Fe� 7� O&O<O O<O<O O&O<O � � � 7
fhggggggggi

We thus have �[/ equationsin the
4

unknowns in 	�
 . From
Eq.(2), we get that

4 �j�d/ and that
4 �k�d/ if and only ifBl�m� . Therearethusat leastasmany rows in ���
N� asthere

arecolumns,so ���
N� hasfull rankif andonly if thecolumnsare
linearly independent.It is easyto seethat the columnsof ���
N�
arelinearly independentif andonly if thecolumnsof eachof the� : ��
 ? :&A � ’s arelinearly independent.Thus, ���
N� hasfull rank if
andonly if eachof the � : ��
 ? :<A � ’s have full rank,which is equiv-
alentto a situationwherenoneof the legsarein a singularcon-
figuration. WhenusingtheJacobianformulationfor the inverse
kinematicsproblemin connectionwith incrementalmovements
wethusalwaysobtainasetof non-singularlinearequationswith
auniquesolutionfor thejoint changes.Noticethatwhen B#nK� ,
thissolutionmustbeobtainedusingapseudoinversesuchase.g.
theMoore-Penroseinverse.In practice,theincrementalstepsare
smallbut finite. Therefore,theaboveformulationis incorporated
into an iterative (Newton-Raphsonlike) schemewherewe need
to computetheforwardkinematicsthrougheachleg in eachstep
to derive a new right handside. As the linearizedmodelhasa
uniquesolutionandastheincrementsaresmall,thetruenonlin-
earkinematicmodelwill alsoin practicealwayshave a unique
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solution.It shouldbenoticedthatthematrix for determiningthe
un-actuatedjoints in the forward kinematicsis the squarema-
trix obtainedby removing the last � rows and the B columns
correspondingto theactuatedjoints from ���
N� . It is theneasily
seenthat this matrix is nonsingularwhenever �@��
N� hasfull rank
meaningthatalsothe forwardkinematicsproblemhasa unique
solutionwhenconsideringincrementalmoves.

Considernow the situation, where o modules(someof
themmayhave openloop kinematics)areconnectedin a chain.
Let now � ?hp A ��
 ?hp A � denotetheJacobianof the q ’ th moduleasde-
finedabove. Assumenow thatwe write this Jacobianas� ?hp A ��
 ?hp A � 5jr � ?sp A= ��
 ?hp A �� ?sp AM ��
 ?hp A �ut
where� ?hp AM containsthelast � rowsof � ?sp A and � ?sp A= theremaining�E��/vFK2H� rows (thusthereareno rows in � ?hp A= if the q ’ th module
hasopenloop kinematics).Let now w ?hp A ��
N� be the matrix that
relatesa given tool displacement	�� seenin the baseframeof
the q ’ th moduleto thesamedisplacementseenin theoverallbase
frame. It can then easily seenthat we may obtain an overall
relation x ��
N��	�
S��	NTVU
wherethe �d/Ky 4 dimensionalmatrix

x ��
N� now is definedas

x ��
N�z�
^_________`
x ? =�A= � � O<O&ObO<O&OjO&O<O �� x ? M A= � � O<O&OjO&O<O �O<O&OO<O&OO<O&O� O&O<O{O<O&ObO<O&O � � x ?}| A=x ? =�AM x ? M AM O<O&ObO<O&ObO<O&OjO&O<O x ?}| AM

f gggggggggi
wherethe � last elementsin 	�TVU containthe displacementand
rotationof the overall tool framemeasuredin the overall base
frame and where all the other elementsare zero. Further-
more,we have defined

x ?hp A= ��
 ?hp A �~��� ?hp A= ��
 ?hp A � and

x ?hp AM ��
 ?hp A �~�w ?hp A ��
N��� ?sp AM ��
 ?hp A � .
Althoughtheformulationmayseemcomplicated,it hasnot

beendifficult to implement.Furthermore,it shouldbeobserved
thatonceit is implemented,it is easyto reconfigurefor new par-
allel manipulators.To illustratehow simpletheconfigurationis,
wewish to pointout thatthewholekinematicsof eachmoduleis
configuredthrougha file interfacewherewe usethewell known
Denavit-Hartenberg formulation.Thefile hasthefollowing sim-
ple format/4 ? =�A 4 ? M A ... 4 ? 7 A� ? =�A= 	 ? =�A=k� ? =�A=�� ? =�A=k� ? =.A=

....

� ? =.A�+�s��� 	 ? =�A�+�s��� � ? =�A���s��� � ? =�A���s��� � ? =.A�+�s���
....
....
....� ? 7 A= 	 ? 7 A= � ? 7 A= � ? 7 A= � ? 7 A=
....� ? 7 A� �h�H� 	 ? 7 A� �h�H� � ? 7 A� �h�H� � ? 7 A� �h��� � ? 7 A� �h����,� p�������� =�,� p�������� M

...�,� p�������� 7�,�u��� p}���H� =�,�u��� p}���H� M

...�,�u��� p}���H� 7
where

�,� p������&� � is the fixed transformationfrom the reference
frame of the fixed platform to the Denavit-Hartenberg coordi-
natesystemfor the baseof the

x
’ th leg and

�,����� p������ � is the
fixedtransformationfrom theframeof thereferenceframeof the
moving platform to the Denavit-Hartenberg coordinatesystem
for thetool of the

x
’ th leg andwherethe

� ?�� Ap , 	 ?�� Ap , � ?�� Ap , � ?�� Ap ’s are
the Denavit-Hartenberg parametersfor the transformationfrom�,� p�������� � to

�,�u��� p}���H� � throughthe

x
’ th leg viewedasaserialarm.

Finally, it shouldbenoticedthat Tdq ?�� Ap is oneif joint q in the

x
’ th

leg is rotationalandzeroif it is prismatic.

4 Calibration

An importantproblemthatmustbesolvedbeforeaparallelrobot
is of any usefor industrialapplicationsis the calibrationof the
robot. For serialrobotstherearevariousexcellentmethodsthat
all give goodresults.However, for parallelrobotstheresulthas
beennot quite so promising. The reasonis that the impactof
parameterchangeon the configurationof the moving platform
may be low, which makes it difficult to estimatethat parame-
ter. However, the main goal is not necessarilyto find accurate
estimatesof all parameters.The goal is ratherto find parame-
tersthatleadto a sufficiently accurateresultfor thepositionand
orientationof the moving platform. Variousmethodsfor such
calibrationusinganexternalmeasurementsystemhavebeenpro-
posed(seee.g. (Geng94),(Nahvi96),(Oliviers95),(Vischer98),
(Zhuang96)). In our work, we have usedthe preciseexternal
measurementsystemRodym6D manufacturedby thecompany
Krypton Ltd. which for our purposeis sufficiently accurate.We
have useda large numberof posesto suppressnoiseandto en-
surethatall importantparametersareapproximatedsufficiently
well. We shallnow givea brief outlineof our chosencalibration
method.

Thefirst stepis to considereachleg asa serialmanipulator
connectingthebaseto thetool andto deriveasetof independent
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calibrationparametersfor thatleg usingtheclassicalapproaches
for serial robots. It shouldbe pointedout that theseareessen-
tially a subsetof theparametersfrom thekinematicinput file of
theprevioussection.Theresultof thecalibrationwill therefore
be extremelyeasyto incorporateinto the kinematics. Let now% ?�� A denotetheseparametersfor the

x
’ th leg. By consideringthe

forwardkinematicsfor the

x
’ th leg, we mayderive anextended

Jacobian ���
 ?�� A '�% ?�� A �<� 	�
 ?�� A 	&% ?�� A�� - ��	��
where 	�� is definedasin theprevioussectionandwenow have
allowed the statickinematicparametersto vary. We may then
establisha Jacobianfor thewholemanipulator���
�'�%,� usingex-
actly thesameideaasin theprevioussection.If thenumberof
componentsin % is denotedby � , the matrix ���
�'�%,� will be�d/�y 4 CK� dimensional.Assumenow thatwe make � mea-
surementswherewe obtain deviations 	�� = '&O<O&OQ'R	��V  between
themoving platformconfigurationfrom theun-calibratedmodel
andthemoving platformconfigurationfrom themeasurements.
For eachof theunknown un-actuatedjoint values,thedeviation
mustbeassumedto bedifferentfrom experimentto experiment.
We thusget �¡�d/ equationsin � 4 F¢BW���£CD� unknowns. By
choosing� sothat �¢�¤�[/¥F 4 C¦BW��§<�¨0�0©2 , wegetastrongly
overdeterminedsetof equationsfor agooddeterminationof the
parametermodifications	&% . We useSingularvaluedecomposi-
tions to suppressproblemsdueto indeterminableor dependent
parameterchanges.

In theDT-VGT module,we have asmentionedB#�P/K�P�
and �1�!� . The numberof independentparametersin a single
chainwas 2&ª , so the total numberof parameters� �£��« . As�d/GF 4 C B¬��� , wegetthat ���Y0�0D��« andwehave therefore
chosen���� � randomconfigurationof theactuatorpositions.
As modelvalidation,we have used �®�¯� � otheractuatorpo-
sitions.We werecapableof usingthecalibrationto suppressall
errorsthat hadsomeregularity (correlationwith the configura-
tion of the PKRM). However, we still have someerrorsof size
approximately2H§�� of the sizebeforecalibration. Theseerrors
haveastructurethatverymuchlookslikewhitenoise.Weexpect
themto bedueto vibrationsin thePKRM duringthecalibration
experiment- a problemthatasdescribedin thenext sectionwill
besolvedverymuch.

5 Embedded modular control

The purposeof embeddedmodularcontrol is to establishthe
PKRM asfully modularcomponentsthatcanbeassembledinto
manipulatorsin variousways.Whendesigninga controlsystem
for a potentially industrial robot systembasedon differentme-
chanicalmodules,wearefacedwith variousdemands:� Thecontrolsystemmustbebasedon a network of embed-

ded control modules,in order to utilize the inherentme-
chanicalmodularity.

� Thetechnologyof theembeddedmodulesmustbeflexible
enoughto adaptto a wide rangeof sensorsandactuatorsin
order to ensurecompatibility with currentand future me-
chanicalmodules.� It must be feasible to minituarize the technologyof the
embeddedcontroller, in orderto ensurecompatibilitywith
physically smallmechanicalmodules.� The embeddedtechnologymust have sufficient real-time
computingand communicationbandwidthto supportde-
mandingcontrolsystems.� It mustbe feasibleto usetheembeddedcomputertechnol-
ogy in industrialenvironments.� The network technologyand embeddedsoftware should
supportself configurationof thesystem,whenthemechan-
ical moduleshavebeenconfiguredandturnedon.

Wehavenotbeenableto identify any existingstandardsys-
tem,capableof supportingall thesedemands.Typical industrial
computersystemsrely on physical modules,eg. C-PCI,VME,
IP andPC-104. to establisha flexible and reconfigurablesys-
tem, but this methodis spaceconsuming,and often resultsin
redundantfunctionality, asthereis seldomaone-to-onemapping
betweenrequirementsandcapabilitiesof existingmodules.

In orderto meetthetechnologicaldemands,we arelooking
towardsa combinationof technologyfrom conventionalindus-
trial automation,ProgrammableGateArrays (FPGA’s), andthe
multimediaindustry.

We are implementingthe analog/digitalfront-endtowards
sensorsandactuators,usingconventionalindustrialcomponents,
suchasbuffers,A/D andD/A converters,transceiversetc.

Insteadof usingconventionalperipheralunits, we are im-
plementingthedigital partof our I/O systemwith programmable
gatearrays(FPGA’s), using the specificationlanguageVHDL.
By implementingan arrayof VHDL modules,for differentI/O
applications,wehavemadea’virtually modularI/O system’,that
canbeadaptedto new sensorsandactuators.As theFPGAtech-
nology allows us to implementvery complex digital statema-
chines,we areactuallyusing the FPGA asa customizableI/O
processor, relieving theembeddedcomputerof many of the tra-
ditionalCPUintensive I/O tasks.

UsingFPGAtechnologyinsteadof conventionalperipheral
units, givesus a greatflexibility whenchoosingCPU architec-
ture. TheFPGAcaneasilybeconfiguredto work with virtually
any CPU on the market. An independencewe areusingto ex-
perimentwith stateof theart DSPtechnologyfor theembedded
controlcomputers.

Thecontrolalgorithmrunningon theembeddedcontrollers
hasuntil now beena simplePD-control,wherewe have hadto
sacrificeaccuracy in orderto obtainstabilityat theeigenfrequen-
cies of the mechanism.We have now beenable to model the
complicatedbehavior of thehydraulicactuatorsleadingto these
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eigenfrequenciesand are going to designa new model-based
controlstrategy thatwill increaseaccuracy.

6 Incorporation into a manipulator

One of the main objectives for the DT-VGT developmenthas
beento createthemasfully modularsubcomponentsthatcanbe
incorporatedinto a long reachmanipulatorwhich will be used
for weldingin confinedareasin shipbuilding (Sørensen01).The
developmentof this manipulatoris carriedout in thecollabora-
tive R&D project”Dockwelder” fundedby the EuropeanCom-
missionunderthe5th framework program.Theprojectconsor-
tium consists(apartfrom us)of OdenseSteelshipyard,theItalian
shipyard Fincantieriandtechnologyproviding companiesfrom
FranceandGermany. The manipulatorconsistsof a telescopic
placermechanism.Mountedat the tip of theplacermechanism
is two DT-VGT modules.At the tip of the outermostDT-VGT
module,a conventionalweldingrobot is placed.This will prob-
ably be a MotomanSV3 robot. All the problemsdiscussedin
theprevioussections(design,kinematics,calibration,embedded
control) arecrucial for the DT-VGT modulesto operatein the
Dockweldermanipulator.

In Figure 5, we show a CAD model of the two DT-VGT
modulesandthe conventionalrobot without the placermecha-
nism. This manipulatoris currentlybeingdevelopedandit will
be testedfor its potentialindustrial reliability andaccuracy ul-
timo 2002 as a subgoalof the Dockwelderproject which will
terminateultimo 2003.

Figure5: A sketchof theDockweldermanipulator

7 Conclusion

We have presentedour technologicalachievementstowardsthe
industrial usageof PKRM’s. We have shown a successfulde-
signusingtheDT-VGT topologythattakesworkspaceaswell as

payloadconsiderationsandrequirementsinto account.We have
presentedthe kinematicsusedbasedon the Jacobianapproach
which hasbeenproven to be an excellent choicewith respect
to genericand modularproperties. We have discussedthe in-
corporationof our PKRM technologyinto a modularindustrial
long-reachmanipulator.

Futureimportantresearchareaswill bethemodelingof de-
flectionsandvibrationsof thePKRM’s. Theproblemof deflec-
tion modelingcanactuallybe viewedasa generalizationof the
calibrationproblemwherethe staticparametersestimateddur-
ing calibrationareallowedto bestrainable.A deflectionmodel
is alreadybeingdevelopedin connectionwith the Dockwelder
project. Vibrationmodelingis on theotherhanda ratherdiffer-
entissuewhich is coupledmuchmoreto theprocesscontroland
is anissuefor futureresearch.
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Abstract: This paper presents analysis and design
considerations for parallel manipulators. Kinematics
properties such as workspace and singularity have been
analyzed and then considered for design purposes. Novel
formulations are proposed for analysis algorithms and then
for optimum design procedures combining the above-
mentioned main characteristics. The proposed algorithm has
been applied to CaPaMan, a spatial 3-Degree of Freedom
(DOF) parallel manipulator.

1 Introduction

The design of parallel manipulators is one of the challenging
subjects of Robotics research in recent years. Indeed, with the
development of parallel manipulators for performing several
tasks, the introduction of performance index or criteria,
which are used to characterize the manipulator, has become
of great interest.
Typically a parallel manipulator consists of a moving
platform connected by several legs to a fixed platform,
usually called base. The paradigm of parallel manipulators is
the Gough-Stewart platform, which has 6 DOF, but recently
machine industry has discovered the potential applications of
parallel manipulators with less DOF, usually 3, 4 or 5.
Indeed, the study of this type of parallel manipulators is
important. They exhibit interesting features if compared to 6-
DOF mechanisms, such as simpler architecture, simpler
control system, high-speed performance, low manufacturing
and operations cost.
Furthermore, for several parallel manipulators with reduced
number of DOF kinematic and singularity analyses can be
solved to obtain algebraic expressions, which are well suited
for an implementation in optimum design problems.
In general, parallel manipulators performances highly
depends on their geometry so that it is of great interest the
design problem but only few work can be found in the
literature.
Several researchers have already proposed optimum design

procedures. Nevertheless, the proposed procedures are
focused only on the optimization of one main characteristic
of the manipulator, such as dexterity (Gosselin, 1992),
kinematic isotropy (Zanganeh and Angeles, 1997),
workspace (Parenti-Castelli et al., 1999).
Optimum design procedures have been proposed in order to
optimize both position and orientation workspaces in
(Ottaviano and Ceccarelli, 2001a; Ottaviano and Ceccarelli,
2001b).
In this work a novel optimum design formulation is proposed
to take into account position and orientation workspaces and
singularities. The first attempt to combine the above-
mentioned design criterion has been proposed in (Ottaviano,
2002).
A numerical example is presented in this work to show the
feasibility of the proposed formulation as applied to a spatial
3-DOF parallel manipulator CaPaMan (Cassino Parallel
Manipulator), whose prototype has been designed and built at
the Laboratory of Robotics and Mechatronics (LARM) in
Cassino.

2 A Formulation for an Optimum Design Regarding
Workspace and Singularity Performances

A design problem is presented in this paragraph in which
multiple criterion have been considered. Three performances
have been taken into account: position workspace, orientation
workspace and singularity. The aim is to design a parallel
manipulator whose position and orientation workspaces are
as close as possible to prescribed ones and free from
singularity.
In general, a multi-objective optimization problem can be
formulated for the optimum design of parallel manipulators
as the minimization of a function vector f in the form

)(min Xf (1)

subjected to
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( ) 0g k <X
( ) 0h l =X               (2)

where X is the vector of design variables and each
component of the objective function is an expression of a
design optimum criterion, (Ottaviano, 2002). Each
component gk (k=1,…,m) describes an inequality design
constraint, and each component hl (l=1,…, n) describes en
equality design constraint.
Referring to workspace and singularity conditions for parallel
manipulators, one can express one or more measures for each
of them in the components of f.
Therefore, in this paper the general optimum design problem
of Eqs. (1) and (2) can be formulated using a multi-objective
function with three components fi that take into account a
measure evaluation of position and orientation workspaces,
and singularity condition.
One can evaluate workspace by means of its volume and
singularity conditions by means measures of the Jacobian
matrices.
The analysis of the workspace of parallel manipulators is a
difficult problem since the workspace boundary is defined by
a set of highly non-linear equations. Indeed, in most of cases,
it is very difficult to exactly calculate the workspace volume
of parallel manipulator. Discretization methods may be
efficient and useful, especially during the design stage.
A formulation for an optimum design of parallel
manipulators has been presented in (Ottaviano e Ceccarelli,
2001a). The authors have proposed a numerical
approximation for the workspace volume by considering the
smallest parallelepiped, which completely contains the actual
workspace.
The workspace volume can be numerically approximated by
considering a parallelepiped workspace volume V*, which
can be evaluated by considering the extreme reaches,
maximum and minimum, along X, Y and Z-axis, if one
consider the position workspace, or the extreme reaches
along Euler angles axes, for the orientation workspace.
The proposed procedure has been considered for an optimum
design of parallel manipulators with prescribed position and
orientation workspaces. In this case the two prescribed
parallelepiped volumes for position and orientation
workspaces volumes are denoted with V’ in Figs. 1 and 2.
An approximation for the evaluation of those workspaces can
be obtained by considering Vpos* and Vor*. Figures 1 and 2
show the proposed numerical approximation of position and
orientation workspaces respectively, for the case of CaPaMan
manipulator.
The numerical approximation has been used for optimum
design purposes. The advantages of this formulation are that
it can be used for any type of robot, even serial, by solving its
Kinematics and can take into account constraints such as
mobility limitation of passive joints and legs interference.
The workspace volume can be numerically approximated by
considering the parallelepiped workspace volume V*, which
can be evaluated as

nml*V ∆∆∆= (3)

in which ∆l, ∆m and ∆n are respectively the difference
between the extreme reaches, maximum and minimum, along
X, Y and Z-axis, (Ottaviano e Ceccarelli, 2001a), if one
consider the position workspace. If the orientation workspace
is considered ∆l, ∆m and ∆n in Eq. (1) are respectively the
difference between the extreme reaches along Euler angles
axes, (Ottaviano e Ceccarelli, 2001b). Reachable positions of
the reference point are computed by a suitable scanning of
the input joint angles within the mobility range.

Fig. 1 The proposed numerical approximation for the position
workspace volume of CaPaMan manipulator.

Fig. 2 The proposed numerical approximation for the
orientation workspace volume of CaPaMan manipulator.
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If one consider the position workspace, ∆l, ∆m and ∆n in Eq.
(3) can be evaluated as

minmax xxl −=∆ ;  minmax yym −=∆ ;  minmax zzn −=∆   (4)

If the orientation workspace is considered ∆l, ∆m and ∆n in
Eq. (3) can be evaluated similarly to Eq. (4).
One of the important drawbacks of parallel manipulators is
that they may lead to singular configurations in which the
number of DOFs of the mechanism changes instantaneously.
This property has attracted the attention of several
researchers because it represents a crucial issue in the context
of analysis and design.
Usually singular configurations are represented by surfaces in
the configuration space and they can be obtained vanishing
the determinant of the two Jacobian matrices J and K.  In
particular, matrix J is related to the Inverse Kinematics
singularities; K is related to the Direct Kinematics
singularities, as described in (Gosselin and Angeles, 1990).
Last ones are considered to be critical, since they are inside
the workspace and in such configurations the manipulator
loses its rigidity becoming locally movable, even if the
actuate joints are locked. Indeed, in this work Direct
Kinematics singularities have been considered for the
formulated optimum design.
Analytical expressions for the Direct Kinematics singularities
have been obtained for planar parallel manipulators, (Sefrioui
and Gosselin, 1992) and for parallel manipulators with
reduced number of DOFs, (Parenti-Castelli et al., 1999;
Ottaviano et al., 2001).
Usually analytical expressions are difficult to obtain for 6
DOF parallel manipulators, but an interesting algorithm for
the determination of the singularities of the general Gough-
Stewart platform has been presented in (Mayer St-Onge and
Gosselin, 2000). This method gives an analytical expression
for the determinant of the Jacobian matrix K.
Therefore, for a general design problem one can consider the
analytical expression of the determinant for the Direct
Kinematics singularities as a performance criteria. Since the
determinant of the Jacobian matrix is configuration
dependent, one can obtain design conditions suitably based
on its analytical expression.
Therefore, the multi-objective optimization problem can be
re-formulated as

( )( ))(f),(f),(fmaxmin)( 321 XXXXf = (5)

with

'V

*V
1)X(f

pos

pos
1 −=

'V
*V

1)X(f
or

or
2 −= (6)

))K((detfun)X(f3 =

where “fun” expresses a function of the determinant matrix K
and can be conveniently determined for the considered
parallel manipulator.
Function f (X) of Eq. (5) can be subject to design constraints
such as

Mkm aaa ≤≤ (7)

when ak is a dimensional design parameter that is limited
within practical values.
In the proposed formulation it has been considered the two
smallest parallelepiped volumes Vpos’ and Vor’, which
completely contain position and orientation workspaces
volumes. An approximation for the evaluation of those
workspaces has been considered by considering Vpos* and
Vor*, which can be evaluated by Eqs. (3) and (4), together
with the kinematic analysis of the manipulator.
The optimum design problem for objective functions f1 (X)
and f2 (X) can be formulated as finding the optimal design
parameters values such as the position and orientation
workspaces are as close as possible to prescribed ones.
Regarding to f3 (X) a function of the determinant of matrix
K. In particular, design considerations can be made in order
to obtain architecture free or sufficiently far from Direct
Kinematics singularities. These considerations can be
deduced by analyzing matrix K, through a function of the its
determinant, which has been synthetically expressed by “fun”
in Eq. (6).

3 A Case of Study: CaPaMan Architecture

A schematic representation of the CaPaMan manipulator is
shown in Fig.1, where the fixed platform is FP and the
moving platform is MP. MP is connected to FP through three
identical leg mechanisms and is driven by the corresponding
articulation points H1, H2, H3.
An articulated parallelogram AP, a prismatic joint SJ and a
connecting bar CB compose each leg mechanism. AP’s
coupler carries the SJ and CB transmits the motion from AP
to MP through SJ; CB is connected to the MP by a spherical
joint BJ, which is installed on MP. CB may translate along
the prismatic guide of SJ keeping its vertical posture and BJ
allows MP to rotate in the space. Each plane, which contains
AP, is rotated of π/3 with respect to the neighbor one.
Particularly, design parameters of the k-th leg are identified
through ak, which is the length of the frame link; bk, which is
the length of the input crank; ck, which is the length of the
coupler link; dk, which is the length of the follower crank.
The length of the connecting bar is hk.
The kinematic variables are αk, which is the input crank
angle and sk , which is the stroke of the prismatic joint.
Finally, the size of MP and FP are given by rp and rf,
respectively, H is the center point of MP, O is the center
point of FP, Hk is the center point of the k-th BJ and Ok is the
middle point of the frame link ak, Fig.1.
The motion of MP with respect to FP can be described by
considering a world frame O-XYZ, which is fixed to FP, and
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a moving frame H-XpYpZp, which is fixed to MP.
To specify position and orientation of the MP with respect to
the fixed frame it is necessary to consider six variables, that
can be chosen as the Cartesian coordinates of the reference
point H and Euler angles ϕ, θ and ψ, as shown in Fig.1.
A built prototype is shown in Fig. 2 and dimensions of design
variables for the built prototype are reported in Table 1.

Fig. 1 Kinematic chain and design parameters of CaPaMan.

Fig. 2. Prototype of CaPaMan at LARM in Cassino.

Table 1. Design parameters of the built prototype at LARM
in Cassino.

ak = ck

(mm)

bk = dk

(mm)

hk

(mm)

rp = rf

(mm)

αk

(deg)

sk

(mm)

200.00 80.00 100.00 109.50 45 ;135 60.00

Velocity equations represent the linear mapping between
joint and Cartesian velocities. The differential kinematic
relation for parallel manipulators can be expressed in the
form

tJ K=ϑ& (7)

where J and K are two Jacobian matrices of the manipulator.
Moreover dϑ/dt is the vector of joint rates,
dϑ/dt=[dα1/dt;dα2/dt;dα3/dt]T. t  is the twist array, a six-
dimensional array for spatial tasks given by t=[vH

T;ωωωωT]T.  The
three-dimensional angular velocity vector of the moving
platform is ωωωω and vH is the three-dimensional velocity of the
operation point H of the moving platform.
Since the mechanism has 3-DOF, only three of the six
variables can be specified as function of the input crank
angles αk, (k=1,2,3), for describing the configuration of
CaPaMan.
The independent coordinates can be chosen as two rotations
about two perpendicular axes intersecting at the mobile
platform center, ϕ and ψ, and a vertical translation, z.
The other dependent coordinates x, y and θ, can be specified
by using a proper formulation of the kinematic analysis.
Thus, Eq. (7) can be rewritten as, (Ottaviano et al., 2001)

rRAAK tJ =ϑϑϑϑ& (8)

where AR expresses the relationship between
tr=[dϕ/dt;dψ/dt;dθ/dt]T and dependent coordinates x, y and θ.
A is a transformation matrix, (Ottaviano, 2002).
Independent coordinates can be specified as function of the
input crank angles only as, (Ceccarelli, 1997)
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312 zzz2D −−= (10)

213 zzz2F −−=

when for k = 1,2,3, one consider

kkk sinbz α= (11)

Thus, the Jacobian matrices associated with the CaPaMan
manipulator can be written as
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Singularity analysis for CaPaMan manipulator has been
carried out in (Ottaviano et al., 2001).
From matrix Kr in Eq. (13) the singularity condition can be
expressed as (Ottaviano, 2002)

1
r3
E2

p
= (15)

If bi=bj, for i≠j, i,j=1,2,3, and assuming u=sα1; v=sα2; w=sα3,
with k=1,2,3, Eq. (15), together with Eqs.(10) and (11), can
be written as

( ) ( ) ( ) Gwvwuvu 222 =−+−+− (16)

with

2
k

2
p

b2

r9
G = (17)

Eqs. (16) represent an elliptic cylinder, which divides the
configuration space into two regions free from singularities:
the region inside and outside the cylinder. Indeed, by
properly choosing design parameters values rp and bk, it is
possible to decide the manipulator to work inside or outside
of the cylinder.
Furthermore, Eqs. (16) and (17) give feasible solutions if and
only if G is minor or equal to 8. This is due to sine function
limitation.
Indeed, by properly sizing the moving platform and crank
length to obtain a G value major than 8 one can obtain an
architecture for CaPaMan manipulator which is free from
singularities.
If one considers an architecture with design parameters of
Table 2 it is possible verify by using Eqs. (16) and (17) that
the considered architecture has Direct Kinematics singular
configurations.
Therefore, a representation of those singular configurations is
shown in Fig. 3.

Table 2. Design parameters of a singular architecture of the
CaPaMan manipulator.

ak = ck

(mm)

bk = dk

(mm)

hk

(mm)

rp = rf

(mm)

αk

(deg)

sk

(mm)

27.85 90.00 100.00 60.00 45;135 50.00

Fig. 3. Direct Kinematics singular configurations in the
configuration space for CaPaMan manipulator with design

parameters of Table 2.

4 A Numerical Example

The proposed formulation has been applied for the optimum
multi-objective design of CaPaMan manipulator by using the
vector objective function of Eq. (6) and results of the position
and orientation workspaces computations, together with the
singularity analysis, which have been reported in (Ottaviano
e Ceccarelli, 2001b; Ottaviano et al., 2001).
The design problem can be formulated as contemporaneously
minimizing three different objective functions, which for the
case of the CaPaMan manipulator assume the form

'V

*V
1)X(f

pos

pos
1 −=

'V
*V

1)X(f
or

or
2 −= (18)

G8)X(f3 −=

The optimum multi-objective design can be subjected to
constraints for the position workspace as

'
maxmax xx ≤ ; '

maxmax yy ≤ ; '
maxmax zz ≤ ; (19)

and for orientation workspace
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'
maxmax ϕ≤ϕ ; '

maxmax ψ≤ψ ; ( ) ( )ψψ θ≤θ '
maxmax ; (20)

We assume rp = rf, ak = ck, bk = dk , so that fixed and movable
plates have the same dimensions, and links of the APs have
the same dimensions, in order to ensure the characteristic
CaPaMan design.
The design value rp = rf has also been assumed to avoid
prismatic joints with too large values of the strokes sk. The
size of the prismatic guides can be conveniently designed
through sk. ak parameter has been properly chosen to avoid
link interference, as reported in [Ceccarelli e Ottaviano,
2000]. Indeed, design parameters for the optimum design of
CaPaMan manipulator are bk, hk, rp, αkmin,αkmax and sk.
The optimum design problem has been defined by Eqs. (18)
to (20) and it is highly non-linear. A critical issue for
proposed optimum design procedure is the choice of a proper
initial guess solution.
For the proposed numerical example we have chosen as
initial guess solution an architecture which is quite different
from the built prototype and for which exists Direct
Kinematics singular configurations.
Indeed, for the initial guess solution the computed value of G
given by Eq. (17) is equal to 2.
Position and orientation workspaces volumes can be
computed by using the proposed numerical approximation of
Eqs. (3) and (4) and the Kinematics of the CaPaMan
manipulator, (Ceccarelli, 1997), to give the values of V*pos
and V*or.
The prescribed position workspace volume V’pos is 192,000
mm3. The prescribed constraints on position workspace are
xmin = -40 mm, ymin = -40 mm, zmin = 150 mm, xmax = 40 mm,
ymax = 40 mm, zmax =180 mm.
The prescribed orientation workspace volume V’or is 108,000
deg3. The prescribed constraints on orientation workspace are
ψmin = -90 deg, ϕmin = 85 degi, θmin= - 90 deg, ψmax = 90 deg,
ϕmax = 95 deg e θmax = 90 deg.
These constraints allow taking into account size and
dimensions of the position and orientation workspaces
volumes.
The proposed algorithm described in the previous section has
been developed in MATLAB code (The Math Works, 1995)
for its convenience for manipulating multi-dimensional
arrays and for its wide range of visualization capabilities. The
“minimax” optimization algorithm of the MATLAB
Optimization Toolbox (The Math Works, 1995) has been
used to solve optimal parameter values.
The used optimization algorithm minimizes the worst case
values of the fi functions of Eq. (18) at each iteration, by
taking into account the constraint equations given by Eqs.
(19) and (20). The used optimization algorithm uses a
Sequential Quadratic Programming (The Math Works, 1995).
Figures 4 and 5 show the position and orientation workspaces
for the optimal architecture of CaPaMan manipulator, whose
design parameters are reported in Table 3.
Figure 6 shows the objective functions f1 (X), f2 (X) and f3

(X) during the process which takes 40 iterations.
By observing Fig. 6 it is possible to note that functions f1 and

f2 are close to zero, indeed the position and orientation
workspaces of the optimum designed architecture are close to
prescribed ones. In fact, for the optimum designed
architecture the position workspace volume is 191,183 mm3

and the orientation workspace volume is 90,030 deg3.
Figure 7 shows the position and orientation workspace
volumes for the optimum designed architecture.
Figures 8 and 9 show the evolution of design parameters bk,
hk, rp, αkmin,αkmax and sk, and parameter ak.

Fig. 4. The position workspace of the optimum designed
CaPaMan architecture.

Fig. 5. The orientation workspace of the optimum designed
CaPaMan architecture.

Table 3. Design parameters of the optimum designed
CaPaMan of Figs.4 and 5.

ak = ck

(mm)

bk = dk

(mm)

hk

(mm)

rp = rf

(mm)

αk

(deg)

sk

(mm)

209.03 108.60 76.33 122.80 93 ;135 50.00
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a)

b)

c)

Fig. 6. Evolution of the objective functions versus number of
iterations of the case of Figs.4 and 5: a) f1=|1-Vpos*/Vpos’|;

b) f2=|1-Vpos*/Vpos’|; c) f3=8-G.

a)

b)
Fig. 7. Evolution versus number of iterations of the case of

Figs.4 and 5: a) position workspace volume;
b) orientation workspace volume.

Fig. 8. Evolution of design parameters for the case of Fig.4
and 5: link length a1; link length b1; link length h1; platform

size rp. (lengths are expressed in mm).
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Fig. 9. Evolution of design parameters for the case of Fig.4
and 5: minimum and maximum values for α.

(angles are expressed in deg).

5 Conclusion

In this paper a design algorithm for the optimal design of
parallel manipulators has been presented. In particular, the
proposed formulation represents an integration of the relevant
aspects of the dimensional design of parallel manipulators in
a multi-objective optimization design by using workspace
characteristics and singularity analysis results. A numerical
example referring to the architecture of the CaPaMan has
been presented to show the feasibility and soundness of the
proposed formulation.
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Abstract: This concept paper proposes the use of the lowest
linearized natural frequency of a parallel manipulator (PM) as
a performance measure for concurrent design of the kinematics,
dynamics and control of a PM. Some interesting properties of the
lowest linearized natural frequency are discussed to illustrate
its potential benefits, while potential shortcomings and open
research questions are enumerated for future work.

1 Introduction

A basic problem in the study of parallel manipulators is how
to best design a manipulator to perform a certain task. A
typical approach to manipulator design might be described by
the following: after a class of manipulators is selected, opti-
mization techniques are employed to select the best architecture
and/or to select kinematic parameters. The first step of the
optimization is to specify a cost function that captures the desired
manipulator performance characteristics and expresses them in
a mathematical form. Depending upon what is required of a
manipulator, different cost functions are devised, and secondary
criteria can be added as constraints on the optimization. After the
optimization is performed, the resulting mechanism is usually
analyzed to ensure that the optimization produced an acceptable
mechanism. If the results of the optimization do not lead to
an acceptable design, the cost function can be modified and the
process iterated.

In this paper we propose a new performance measure as
an alternative that may simultaneously capture characteristics of
a manipulator’s kinematic and dynamic properties: the lowest

linearized natural frequency. Linearized natural frequency can
serve as a measure of the dynamic performance of a nonlinear
system about an operating point. By observing linearized natural
frequency at various points in the operating space an overall
picture of the configuration based performance of the mechanism
can be obtained, and thus the linearized natural frequency can
seemingly be used to establish the overall dynamic performance
of a nonlinear system. This paper outlines properties of the
lowest natural frequency that illustrate its potential as a per-
formance measure, discusses advantages and disadvantages of
this measure, and enumerates open research questions to be
addressed.

Most design strategies utilized currently look at the kine-
matics and the dynamics of the manipulator separately. Usually,
some aspect of the kinematics of the manipulator are optimized
first and then the dynamics are analyzed. Sometimes the dy-
namics are optimized after the kinematic parameters are defined.
This is typically done because the analysis tools for both realms
are different, and dynamic analysis is usually very difficult to
perform. Additionally, the dynamics of a manipulator can be
“modified” using different control techniques, thus diminishing
the need to perform dynamic analysis before the kinematic
parameters are selected. Because of these issues, most research
has refrained from optimizing the dynamics of PMs during the
hardware design phase.

This paper proposes a way to merge the two realms into
a single performance measure:1 the lowest linearized natural

1It is understood that secondary cost functions are still required to capture
other aspects, such as workspace, etc. Nevertheless, a reduction of the total
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frequency. By integrating the kinematics and dynamics in the
design process, more efficient manipulators can be constructed.
However, it should be noted that these are only thoughts on
directions for research. The ideas contained herein are proposals
and have not been thoroughly researched. Given this caveat, we
hope to present sound reasoning for why this topic should be
investigated further.

2 Literature Review

For parallel manipulators, there exists a great deal of literature
on their kinematic analysis, including the workspace [1, 2] and
singularities [3, 4, 5, 6]. Merlet [7] provides an excellent
overview of the optimization of parallel manipulators in his
book. Another good starting point for optimization is provided
by Angeles [8]. The majority of the methods cited by Angeles are
for serial mechanisms, but are applicable to parallel mechanisms
as well. Some of the more popular optimization techniques are
discussed below.

Yoshikawa [9] proposed several measures of manipulability.
Lipkin and Duffy [10] and Doty et al. [11] discussed problems
with the scale and frame invariance of those manipulability
measures. Gosselin [12] used the inverse of the condition number
(aka the dexterity) with a characteristic length to address the
problem of scale invariance. Kurtz and Hayward [13] investi-
gated several different objective functions including dexterity,
dexterity uniformity, and forces to design a redundant spherical
mechanism.

Gosselin and Angeles [14] optimized a three degree of
freedom manipulator for global workspace and Merlet [15]
designed a PM to have a specific workspace. Chakarov [16]
optimized the stiffness of a PM, while Bhattacharya et al. [17]
designed a Gough-Stewart platform for optimal stiffness. 2

As a separate topic, the dynamics of PMs [18] have not
received much attention for optimal design. A possible reason
for this is that parallel manipulators are dominated by their kine-
matics as opposed to serial manipulators which are dominated
by their dynamics. One of the very few papers actually defining
dynamic performance measures and using them for optimization
is by Khatib and Bowling [19]. In this article, the inertial and
acceleration properties of a PM are optimized using a weighted
cost function.

Numerous papers have used one or more of the performance
measures above to design PMs. For example, Lückel et al. [20]
used a computer model with an iterative routine to design the
TRIPLANAR robot. Company et al. [21] also used an iterative
technique to come up with a 3 axis machine tool. Numerous
other references exist, but are not included here because of
length.

number of cost functions to be used is still advantageous.
2Note that the method used by Bhattacharya et al. can suffer from the same

problems with frame invariance, but is included here because of its relevance to
this problem.

3 Review of Singularities

A significant portion of this paper focuses on the ability of the
linearized natural frequency to detect kinematic singularities.
This section provides a brief review of the notation and termi-
nology of kinematic singularities. Utilizing the formulation in
Gosselin and Angeles [4], one can write the relationship between
the joint velocities, θ̇, and end effector twist, $t, as:

Aθ̇ = B
[
v
ω

]
≡ B$t (1)

where A,B are called Jacobian matrices and are most conve-
niently written as functions of both, the joint angles, θ i, and
the end-effector position and orientation. Assuming a non-
redundant, fully constrained manipulator, the number of outputs
is equal to the number of inputs, and thus, A and B are square.
If A is non-singular, then Equation (1) can be written as:

θ̇ = J$t where J ≡ A−1B (2)

Using the principle of virtual work (a complete derivation
can be found in Craig [22]), a relationship can be derived
between the input torques, τ , and output wrench, $w as follows:

τ = Jᵀ$w. (3)

Singular configurations occur if either matrix A or B is
singular [4]. If A is singular, a leg singularity is encountered
and the end-effector is over-constrained, i.e. it instantaneously
loses at least one degree-of-freedom. This type of singularity is
due to the serial nature of the legs and has been well discussed
for serial manipulators. If B is singular, a platform singularity
is encountered and the end-effector is under-constrained, i.e. the
end-effector can move instantaneously even if all actuators are
locked.

4 Proposed Optimization Procedure

Typically, one designs a PM using a standard procedure. One
picks an architecture, creates a cost function from a suitable
performance measure(s), and then iteratively changes the kine-
matic parameters until the cost function is either minimized or
maximized such that the optimum design is found. After the
kinematic parameters are defined, typically a dynamic analysis
is performed so that a suitable controller can be designed.

The method proposed in this paper is to combine the kine-
matic, dynamic, and control parameters into one encompassing
cost function. In this way, the mechanism is concurrently
designed. Specifically, the base performance measure for this
cost function is the lowest linearized natural frequency, ω1.
Examples of the different types of cost functions that could be
devised using ω1 are:

1. min
W

(ω1)
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2. min
W

(ω1ζ1)

3. max
W

|ω1 − ωavg|

where W is the workspace, ζ1 is the lowest linearized damping
ratio and ωavg is an average desired natural frequency. Likewise,
any other norm based cost functions might be appropriate. These
cost functions are then either minimized or maximized to find an
optimal set of kinematic (leg lengths, actuator placement, etc.),
dynamic (inertias), and control (gains) parameters.

5 Properties of the Natural Frequency

In this section some of the advantages and disadvantages of using
a parallel manipulator’s lowest linearized natural frequency as
a performance measure are enumerated. Before discussing the
these advantages and disadvantages, a review of some of the
relevant concepts from linear system theory is in order.

5.1 Review of Linear System Parameters

The linear system parameters of interest in this paper are a
system’s natural frequencies and damping ratios. However,
for much of the discussion only the lowest natural frequency,
denoted by ω1, will be considered. Note that the use of natural
frequencies and damping ratios assumes that the modes of the
mechanism are underdamped, which implies that there are as
many natural frequencies as there are degrees of freedom.

The linearized natural frequency and damping ratio can be
used to estimate a number of local, low speed characteristics of
the system performance. For example, system response times,
such as rise time or settling time can often be estimated using
the smallest quantity |ζiωi|, where i is a mode index. The
lowest quantity ζ1 determines whether the system will tend to
vibrate and how much vibration might be expected. The natural
frequencies and damping ratios together can be used to predict a
variety of local response characteristics. Finally, the real part of
the linearized system’s eigenvalues, −ζiωi, determines the local
stability of the system, i.e. the system is unstable if −ζiωi > 0
for any i.

The following two subsections will highlight some of the
key advantages and disadvantages to using the linearized param-
eters as performance measures for parallel manipulators.

5.2 Advantages

There are a number of advantages of using the linearized, quasi-
static natural frequencies and damping ratios. Some of these
advantages are as follows:

1. Important kinematic elements are embedded in the natural
frequencies (e.g. platform singularities appear as zero nat-
ural frequencies – this will be discussed in more detail in
Section 6.2).

2. Natural frequencies are physically meaningful measures of
performance (at least in the linearized sense).

3. As a consequence of item 2 (above), the natural frequencies
and damping ratios, or any relevant function of the two
measures, are frame and scale invariant measures of the
dynamic performance of the parallel manipulator.

4. The use of natural frequencies and damping ratios is a
holistic approach to design, in that it combines kinematic,
dynamic and controller parameters into the same cost func-
tion.

5. When allowing controller gains to vary as design param-
eters, then (at least for low speeds) the mechanism can be
guaranteed to be stable by ensuring that the quantities−ζ iωi

are negative for all i.

6. A natural frequency measure can indicate regions of poor
dynamic performance that kinematic measures alone may
not detect.

Additionally, natural frequency can potentially be used for
the design of redundantly actuated parallel manipulators. In
particular, cost functions based on natural frequencies could be
used to design redundant manipulators that have fewer singu-
larities, posses faster response times, and behave more linearly
than their non-redundant counterparts. However, there are some
open questions regarding the computation of natural frequencies
for redundant manipulators that must be answered before such
design strategies can be developed.

5.3 Disadvantages

There are some apparent drawbacks to the use of natural fre-
quencies and damping ratios as base performance measures in a
design cost function. It should be noted however that most of
these drawbacks are related more to implementation difficulty
than to the value of the measure.

1. Equations of motion must be derived symbolically, and
then linearized about an arbitrary point in the workspace.
Since the dynamic equations rely on the kinematic equa-
tions, derivation of the dynamic equations must be done in
addition to, not instead of, the kinematics.

2. The best cost function to use is not obvious. Several
examples of possible cost functions were shown in Section
4, but none of them captures all aspects of the mechanism.

3. There are more parameters to vary, thus the computational
expense of an optimization is increased.

4. There has not yet been any research, at least to these
authors’ knowledge, regarding the linearization of a set of
dynamic equations corresponding to a parallel manipulator
with more than one degree of rotation at the end effector
(the general form of the dynamic equations of most parallel
manipulators provide unique challenges for linearization
and eigenvalue computation).
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5. Natural frequency does not reveal any information about the
size of the workspace.

6 Dynamic-Kinematic Relationships

As already mentioned, the dynamics and kinematics of a mech-
anism are inherently related, so it might seem reasonable that
an ideal performance measure would exist that incorporates both
the kinematics and dynamics. Initial research indicates that the
linearized natural frequency of a parallel manipulator synthesizes
key elements of both the kinematics and dynamics in a way
that may make it a good performance measure. An exposition
of some of the relationships between natural frequency and the
Jacobian are provided in the following subsections to support this
idea.

6.1 Numerical Example for Linearized Natural Frequency

We will start with a numerical example for a simple parallel ma-
nipulator. Figure 1 shows a 2RPR planar parallel manipulator. To
compute the natural frequencies of this manipulator throughout
its workspace the following assumptions were made:

1. the manipulator is controlled by independent joint PD
controllers;

2. the mechanism lies in the horizontal plane, so gravity has
no effect;

3. the link inertias are not negligible;

4. the mechanism is linearized about static equilibrium points;

5. the mechanism is underdamped.

Note that for the mechanism to be in static equilibrium, the end-
effector velocities and accelerations must be zero, and the end-
effector position must be at the desired position. Also note that
the desired position is simply the input to the controller, so any
point in the workspace can be an equilibrium point.

The natural frequency can be calculated for various positions
in the workspace by linearizing the equations of motion about
an arbitrary desired position, computing the eigenvalues of the
system and extracting the natural frequency information from
the eigenvalues. For more detailed information on this process
see [23]. Figure 2 shows the lowest natural frequency of the
manipulator as the position of the end-effector varies over a
portion of the x-y plane. Note that due to practical joint
limitations the mechanism would tend to be restricted to a
smaller reachable workspace than the region shown. Note also
that the frequency plot corresponds to the manipulator in Figure
1 for L = 1.

There are two characteristics that are of particular interest
in Figure 2. First, the natural frequency along the straight line,
y = 0, in the workspace is zero. This line corresponds exactly
to the manipulator’s platform singularities. This characteristic
illustrates a connection between a platform singularity and a
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Figure 1: Two degree-of-freedom Parallel Manipulator
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Figure 2: Low Natural Frequency Plot

natural frequency of zero, which will be discussed in Section
6.2. Second, notice that near the points (x, y) = (0, 0)
and (1, 0), which are the locations of the base revolute joints
and leg singularities, the natural frequency surface is steep but
continuous. The continuity of the surface, which is assured only
if the leg inertias are not neglected, will become important in
Section 6.3.

6.2 Properties of the Natural Frequency

The fact that a vanishing natural frequency of the parallel ma-
nipulator from Figure 1 corresponds to the platform singularities
of the mechanism suggests that perhaps there exists an important
relationship between the dynamic measure of natural frequency,
and the kinematics of a mechanism. In fact, this relationship
leads directly to the recognition that a zero natural frequency
is a condition of diminished dynamic performance, which is
encapsulated by the following definition:
Definition 1: A Dynamic Singularity of a parallel manipulator is
a configuration for which the natural frequency associated with
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at least one mode is zero, i.e. min(ωn) = 0.
In essence a dynamic singularity is a location where the

dynamic performance of a manipulator degenerates, and
the manipulator becomes incapable of moving via its own
actuators in the direction (or mode) associated with the zero
natural frequency.

Clearly, a dynamic singularity is an undesirable configura-
tion of a mechanism. An appropriate question is then: under
what conditions will a mechanism be in a dynamic singularity?
While this is an open research question that is not fully answered
in this paper, the following discussion is intended to give some
insight into this problem.

As a motivation consider a simple, single-degree-of-
freedom system with no damping, that when linearized has the
form

m(x0)∆ẍ + k(x0)∆x = τ (4)

where x0 is a point in the workspace. To examine the charac-
teristic dynamics of the system, only the homogeneous system
needs to be considered, i.e. τ = 0. The natural frequency for this
system at x0 is

ωn =
√

k(x0)/m(x0) (5)

For the natural frequency of the system to be zero, one or both of
the following statements must be true: either the stiffness, k(x0),
must be zero, or the inertia, m(x0), must be infinite. As it turns
out, the latter case can actually arise, and will be discussed in
Section 6.3
Hypothesis 1: If the determinant of the combined Jacobian, J =
A−1B, at a given configuration is well-defined, but singular,
then the manipulator is in a dynamic singularity. In other words,
if detB = 0 and detA �= 0, then min(ωn) = 0.
Reasoning:
Consider the linearized equations of motion of a parallel manip-
ulator without damping. A common form of these equations can
be written as

(M +
∑

i

Jᵀ
i MiJi)︸ ︷︷ ︸

M̂

ẍ + JᵀKJx = 0 (6)

where M is the linearized inertia matrix and JᵀKJ represents
the linearized stiffness matrix. M̂ is the effective mass matrix
as seen at the end effector. Note that K is the stiffness of the
mechanism (in joint space) due to the actuators under a control
law, and perhaps also the structural stiffness of the links (also
in joint space). The terms Jᵀ

i MiJi are the linearized leg inertia
terms, where Mi is the inertia matrix of the ith leg with respect
to a body fixed coordinate frame and J i is the leg Jacobian matrix
that relates the velocities of the leg in the leg coordinate frame to
the end effector velocities.

Based on Equation (6) the lowest natural frequency of
the manipulator is found by solving the following eigenvalue

problem for ω:

det(Iω2 − M̂−1JᵀKJ) = 0 (7)

But if detJ = 0 (implying that the manipulator is in a platform
singularity), then M̂−1JᵀKJ is singular which implies that at
least one root of Equation (7) is zero, and thus min(ωn) = 0. �

This hypothesis indicates a useful relationship between the
kinematics and dynamics of a parallel manipulator 3. However, a
number of open questions need to be addressed to fully reveal the
relationship between the kinematics and the natural frequency.
Research Questions:
Question 1: If detA = 0 and detB = 0 then is min(ωn) = 0?
Question 2: If detA = 0 and detB �= 0 then what can be said
about min(ωn)?
Question 3: Does min(ωn) = 0 imply that detB = 0?

Though the answers to these questions are not known, it
may be useful to discuss an example that confronts a situation
in which the assumptions of Question 1 hold. In the following
section a special configuration of the 2RPR manipulator shown
in Figure 1 is addressed.

6.3 Interesting Example

The 2RPR manipulator from Figure 1 can be in a leg and
platform singularity simultaneously only at the points (x, y) =
(0, 0) and (L, 0). Only one point needs to be considered because
the manipulator is symmetric.

Consider the case where the end effector is near the
leg/platform singularity (x, y) = (L, 0). Clearly when the end
effector approaches the point (x, y) = (L, 0) along the path
(L, ε) as ε → 0 (assuming that such a point is reachable), where
0 < ε � L, A and B both become singular:

A =
[
�1 0
0 �2

]
≈

[
L 0
0 ε

]
→

[
L 0
0 0

]
(8)

B =
[

x y
−(L − x) y

]
=

[
L ε
0 ε

]
→

[
L 0
0 0

]
(9)

This result confirms that (L, 0) is both a leg and a platform
singularity. Now consider what happens to the combined Jaco-
bian J. The limit as ε → 0 of the combined Jacobian, J, is not a
singular matrix:

J =

[
x

1

y

1

−(L−x)

2

y

2

]
≈

[
L
L

ε
L

0
ε

ε
ε

]
→

[
1 0
0 1

]
(10)

Along this path J is well-conditioned, but the limit of J along
another path, such as (x, y) = (L − ε, 0) where ε → 0 gives a
different result. Specifically,

J =
[

L−ε
L−ε

0
L−ε

ε
ε

0
ε

]
→

[
1 0
0 0

]
(11)

3It is only a hypothesis, rather than a proposition, since Equation (6) may not
sufficiently represent the relevant dynamics of all parallel manipulators
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Figure 3: Two Degree of Freedom Parallel Manipulator Near a
Combined Leg and Platform Singularity

These results indicate a discontinuity in the stiffness4 at
the actual location (L, 0). So the question remaining is: what
happens to the natural frequency? By numerical calculation of
the natural frequency from the linearized equations of motion it
was found that the lowest natural frequency converges to zero
along any trajectory that goes to (L, 0). This trend can be seen
in Figure 2 (recall that L = 1 in Figure 2).

Though the numerical calculations seem to confirm that the
natural frequency can detect such a problem, it would help to
have a more intuitive example to see what is actually happening.
As suggested by the discussion in section 6.2, in particular
by Equation (5), there are two possible manners by which the
natural frequency can tend to zero. Either some component of the
stiffness must degenerate or some component of the inertia must
become infinite. Since the stiffness was shown not to degenerate
along the path (L, ε) for ε → 0, while the natural frequency does,
in fact, go to zero, the effective inertia must become infinite. In
fact, this was confirmed numerically, but it is difficult to see how
this can be the case from Figure 1.

It is easier to see how the effective inertia becomes infinite
for the mechanism seen in Figure 3. Figure 3 shows a 2RPR
manipulator that shares the same velocity kinematics (and thus
the same Jacobian relations given by Equations (8)–(11)) with
the manipulator from Figure 1. However, the manipulator from
Figure 3 has been contrived in such a manner as to allow the end
effector to (nearly) reach the leg/platform singularity described
above. Specifically, the links I–IV from Figure 1 have been
modified to allow for more freedom of motion. Note that since
both of these manipulators have the same combined Jacobian J
and leg Jacobians Ji, though the quantities M and Mi (from
Equation (6)) may differ, the natural frequency will still tend to
zero at (x, y) = (0, L).

To see physically why the natural frequency tends to zero
consider again the position (x, y) = (L, ε) in Figure 3. As
ε → 0, the effective rotational inertia of the right-hand leg as
seen by a horizontal force applied to the end-effector by the

4This example illustrates that any property of the J matrix along a given
trajectory may not detect closeness to a singular configuration of this type. In
fact, in the Jacobian matrix the effect of the leg singularity appears to cancel the
effect of the platform singularity.

left prismatic actuator goes to infinity, because the length of the
moment arm for the horizontal force tends to zero as ε → 0.
Note that in reality this infinite inertia may be prevented due to
joint motion restrictions. However, in any case, it seems clear
that natural frequency can indicate a degradation of the dynamic
performance of the manipulator in a region near the leg/platform
singularity, while the combined Jacobian J does not.

7 Conclusions

The purpose of this paper was to show the usefulness of the lin-
earized natural frequency of a parallel manipulator. In particular
we proposed the use of natural frequency (and damping ratio) as
a flexible performance measure upon which to build cost func-
tions for the optimum concurrent design of a parallel manipulator
and to obtain the optimal kinematic, dynamic and controller
parameters of that manipulator. In addition, we motivated the
use of natural frequency in this regard by introducing a concept
known as a dynamic singularity, which is a configuration of a
parallel manipulator where the dynamic performance (at least
locally) goes to zero, and gave a simple example that indicates
a relationship between a dynamic singularity and a kinematic
singularity.
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Abstract: This paper presents the study of a parallel 
mechanism for the Gregorian offset antenna with double 
reflector developed by Alenia Aerospazio. The architecture of 
the mechanical system can rightly be considered a six-
degree-of-freedom platform-type parallel manipulator with 
six prismatic legs connected to the base and moving 
platform. A reflector with appropriate surfaces for the 
transmission of signals is fixed to each platform. The 
alternative tracking system studied is based on the analogy of 
the Stewart platform mechanism actuated by prismatic joints 
on the legs. First, a three-dimensional vector optical analysis 
was performed on the system relative to the reciprocal 
position of the reflectors. Varying the incidence conditions of 
the electromagnetic signal on the fixed surface, the position 
and orientation of the upper reflector, called sub-reflector, 
are found for the best optical configuration. The kinematic 
relations of the system in terms of the displacement, velocity 
and acceleration of the linear prismatic actuators are 
derived and used to minimise tracking errors due to 
disturbances effecting the satellite in orbit. The 
implementation of the equations is illustrated by computer 
simulation, and numerical results are obtained for two input 
conditions of disturbance. 
 
 
1 Introduction 
Various configurations are possible for satellite antenna, each 
with different characteristics. In the antennas which adopted 

Gregorian configuration, shown in Figure 1, the geometric 
parameters of the paraboloid and ellipsoid are considered. 
The  geometry of  the ellipsoid is  such  that rays emitted by a  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 – Gregorian offset antenna W24. 
 

source placed at one of the two focuses, F1, are reflected in a 
direction passing through the other focus, F2. If the ellipsoid 
is positioned relative to the paraboloid in such a way that its 
focus F2 coincides with the focus of the paraboloid itself, 
well-known geometric properties result in any ray emitted by 
F1 being propagated, after the two reflections, in a direction 
parallel to the axis of the paraboloid.  

120



 

In particular, the antenna under study has a configuration 
defined offset, shown in Figure 2, because it does not present 
the axial-symmetry of the correlated onset configuration, as 
in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 – Gregorian offset 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 – Gregorian onset 
 

 
In the Gregorian type satellite antenna, the system optics 

are invariable and optimised under conditions of standard 
reception. Here the boresight, i.e. the central beam of the 
incident signal, is parallel to the axis of the reflector with 
paraboloid surface. Any corrections necessary are made 
using a tracking system based on a biaxial positioning 
mechanism, APM Antenna Positioner Mechanism, to move 
the platform carrying the antenna, and a coaxial actuator, 
Sub-reflector Actuator Mechanism, consisting of a stepper 
motor to rotate the upper reflector, termed sub-reflector. The 
principle is to use the APM system to point the lower 
reflector and, therefore, the whole antenna, given that the 
relative positions of the components making up the optical 
system are invariable, as seen in Figure 4. 

The concept developed in this study is to track the 
antenna using linear actuators on its legs to modify the 
position and orientation of the sub-reflector and obtain the 
desired optical configuration. This suggests schematising the 
antenna mechanical system as a 6-6 platform-type parallel 
mechanism, commonly called a Stewart platform. This model 
consists of six telescopic legs, a base and a mobile platform. 
One end of each leg is connected to the base platform by a 
universal joint, while the other end is connected to the 

moving platform by a spherical joint. Six actuators on the 
legs are used to control the motion of the manipulator, as in 
Figure 5.  

The relations of the system at the displacement, velocity 
and acceleration level of the prismatic joint variables are 
derived from the kinematic model, and used to control the 
position of the moving platform and, consequently, of the 
sub-reflector integral with to it.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 – Tracking of the Gregorian offset antenna using an 
APM system to move all components. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 – Tracking of the Gregorian offset antenna using a 
system of actuators on legs to move the sub-reflector alone. 

 
 
2 Vector analysis of reflection 
 
The aim of the following analysis is to determine the position 
and orientation of the sub-reflector centre, C, which 
guarantees a correct reception even when the direction of 
incidence differs from the condition of standard reception, 
i.e. when the boresight is no longer parallel to the paraboloid 
axis. This means that focus F2, common with the lower 
reflector, is shifted because of disturbances while focus F1 
remains fixed and coincident with the emitter/receiver 
element, termed feed (Silver, 1986) 

The input of this analysis is the geometry of the upper and 
lower reflectors. While the lower surface is assumed 
coincident with the theoretical surface, i.e. the paraboloid 
cross-section, the sub-reflector is schematised as a spherical 

�

�
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mirror, except for subsequent corrections to take surface 
irregularities into account.  

Referring to Figure 6, three co-ordinate frames are 
defined: 
fixed frame FP (XP, YP, ZP) with its origin at the point OP 
integral with the antenna base; 
frame F1 (X1, Y1, Z1) not rotating with respect to frame FP 
and with its origin at the point O1, centre of the parabolic 
reflector, whose co-ordinates are known in frame FP; 
frame FS (XS, YS, ZS) with its origin at the centre of the sub-
reflector, such that the ZS-axis is directed along the sub-
reflector axis. 

The plane in which reflection occurs, ��, is tangent to the 
paraboloid at point O1; it is then possible to define frame 1F̂ , 

obtained by rotating F1 around the axis Y1 by an angle ��� 

such that �� coincides with the plane 11ŶX̂ . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 – The frame notations. 
 
Let ei be the versor indicating the direction of incidence of 
the boresight. Due to variation in the direction of incidence 
with respect to standard conditions, the versor ei will form 
two, non zero, angles �1 e �2 , defined in Figure 7. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 – Versor and angles of incidence. 
 

To perform the reflections, it is first necessary to express 
ei with respect to 1F̂ : 

iYi eRe ��ˆ                                   (1) 

where RY  is the 3�3 matrix transforming F1 co-ordinates 

into 1F̂  ones: 
 

�
�
�

�

�

�
�
�

�

�

�

�

)θ/2cos(0)θ/2sin(
010

)θ/2sin(0)θ/2cos(

YR                     (2)                  

 
To obtain the reflected versor irê  it is enough to invert the 
signs of the X and Y co-ordinates of iê , recalling the matrix: 

 

iir ee ˆ
100
010
001

ˆ 	

�
�
�

�

�

�
�
�

�

�

�

�

�                             (3) 

 
The unit vector irê  is expressed in the rotated reference 

system 1F̂ . The unit vector of the direction of reflection in 

frame F1 is found by: 
 

irYir eRe ˆ1
��

�                                  (4) 
 

Assuming that the geometric position of F2 on varying the 
angles of incidence �1 and �2  is a sphere with centre at O1 
and a radius r1 , as in Figure 8, the vector identifying the new 
position of focus 'F2  is calculated by multiplying the versor 
eir by its modulus, i.e. the focal distance r1: 
 

rr i121 'FO e��                               (5) 
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Fig. 8 – Reflection on parabolic surfaces. 



 

 
This simplified hypothesis is a good optical-geometric 

approximation of the antenna behaviour in the radio-
frequency domain. In fact, if phenomena caused by 
diffraction and edge effects are excluded, geometrical optics 
are a good approximation of physical optics. This procedure 
makes it possible to determine the direction in which the 
beam emerges from the parabolic reflector and, in particular, 
the new position of the reflector focus 'F2 , which, due to the 
properties of the Gregorian optical system, coincides with 
one of the sub-reflector focuses. 

The next step consists of positioning and orienting the 
sub-reflector to obtain a correct reflection, knowing the new 
position of focus F2 and maintaining focus F1 fixed at the 
position of the antenna feed. The plane �2 is defined as 
belonging to the beam carried by the vector 'FO 21  and 
passing through point F1, or as belonging to the carrier beam 

11FO  and passing through 'F2 . 
The phenomenon of reflection takes place entirely in the 

plane �2 and this allows laws of geometrical optics to be 
used. In particular, using the reference system F3, defined 
rotating F1 so that Z1 coincides with the versor of the 
reflected ray ire , the problem is further simplified. The 
associated rotation matrix Rt has the Z3 axis coincident with 
the versor of eir, the Y3 axis is the versor orthogonal to the 
plane �2, and the X3 axis is obtained from the vector product 
of the first two to complete the right-handed triplet 
 

]Z;Y;[X 3333 �R                            (6) 
 
where 
 

ire�3Z ,       
n
n

�3Y ,      333 ZYX ��         (7) 

                                    
and n is the orthogonal vector to the plane �2, defined by the 
co-ordinates of points F1 and F2’ as: 
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Multiplying from the left the vectors 11FO  and 'FO 21  by the 
matrix R3 gives their expressions in the reference system F3, 
or better, as a result of how F3 was defined, in the plane Z3X3 
which coincides with �2. It should be noted that point F2 
belongs to the Z3 axis. 

Having brought the problem to the aptly chosen plane �2, 
the laws of geometrical optic can be used. In particular, the 
condition must always hold: 

 

1/f1 + 1/f2 = 2/r                         (9) 
where f1 and f2 are the distances on the Z3 axis of the two foci 
from the vertex V, and r is the radius of the spherical mirror. 
The other relation connecting variables f1 and f2 is obtained 
from the condition that point C must be situated at the 
conjunction of points F1 and F2, as shown in Figure 9: 

 
z1 - z2 = h = f2 - f1                        (10) 

 
Referring to Figure 9 and eqs. (9 & 10), the variables f1 

and f2 can be calculated, and consequently the co-ordinates of 
the centre C of the sub-reflector: 

 
zc = z2 + f2 – r                        (11) 

 
xc = (-x1)(f2-r) / h                       (12) 

 

];0;[OOCO 11 CCS zx��              (13) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 –  Geometry of reflection in the ��� plane on the  
sub-reflector considered spherical. 

 
The 6�6 rotation matrix S of the sub-reflector is defined as: 
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where 

 
)/arcsin( rxγ C��                          (15) 

 
Referring to the inertial frame: 
 

11
1

3 OO)OO(OO PSSP ����
�Rp               (16) 

 
SRQ ��

�1
3                                  (17) 

 
Eqs.(16 & 17) represent the analytical expression of the 

position and orientation of the sub-reflector C in the case of 
non-zero angles of incidence. 
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To validate the procedure, trials were conducted to study 
the behaviour of the input/output electromagnetic signal of 
the antenna with the support of GRASP8 software used by the 
electromagnetic design group of the Alenia Spazio Antenna 
Department. 

With GRASP8 it is possible to obtain radiation diagrams 
using the physics-optics description to calculate the electro-
magnetic field of the antenna under examination. In more 
detail, the program calculates the electrical currents 
generated on the reflectors by the feed, and then the 
corresponding long-range radiation produced. Figure 10 
shows a graphical output of this software. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10 – Graphical output of the simulator. Displacement of 
coverage with ��=120°, ��=1°, 2°, 3°. 
 

The trials consist of supplying the simulator with the 
position of the sub-reflector centre and its rotation matrix for 
given angles of incidence and then verifying the behaviour of 
the radiation beam, in particular the difference between the 
given angle of incidence values, termed mechanical, and 
those actually obtained with the beam, termed electrical. This 
difference is taken as an index of the integrity of the 
procedure developed. Simulations for given values of �1 and 
�2 showed significant differences and an irregular behaviour 
which can be imputed to the excessive simplification of 
assuming the sub-reflector surface to be spherical. 

Greater precision in determining the position of the sub-
reflector centre is possible if the non-spherical geometry of 
the surface is taken into account by refining the law of 
reflection with the expression: 
 

1/f1 + 1/f2 = k/r                             (18) 
 
where the constant k is found by applying the equation 
inversely when the antenna is in the fixed configuration of 
optimal reflection. The values of f1 and f2 can then be 
calculated, and from these the constant k defined in eq. (18): 
 

k = r (1/f1 + 1/f2 )                             (19) 
 
In this geometry, k = 2.12. 
In the light of this new value, the geometry of reflection 
becomes that shown in Figure 11, for which the equation 
obtained previously cannot be used. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11 – Geometry of reflection in the �� plane on  
sub-reflector with corrected surface 

 
Since the line KC bisects the angle 1FK̂O , it follows that: 
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This transcendental equation can be solved by various 
methods: for example by substituting the variable, letting tg 
����y gives: 
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For simplicity, let: 
 

AxF �1                               (22) 
Bzz FC �� 1                          (23) 

 
where A and B are known constants, since 1Fx and 1Fz are 
fixed and zC  is calculated from eq. (11). Eq. (21) becomes: 

 

ryAyByy ����� 2)2(1 22           (24)                  
 
This equation in y can be rendered in polynomial form with 
coefficients which are known terms: 
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Among the possible solutions of yi, for i = 1,…,6, imaginary 
solutions are ignored and the only admissible positive 
solution is used to calculate the value of � . 
Starting from this angle, the co-ordinates of C are found: 
 

zC = zP – r cos�������������������������������(26) 
xC = - r sin�������������������������������������(27) 
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and also the rotation matrix S of the reference system integral 
with the sub-reflector with respect to the system F3, which 
expresses a rotation of � around the Y3 axis: 
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The vectors and matrices so found are then expressed in the 
reference system F1, again using the inverse of matrix R3, as 
in eqs.(16 & 17). 
Figure 12 shows the results of this simulation, evidencing a 
greater precision in terms of difference between electrical 
obtained angles and mechanical imposed ones, and above all 
a greater regularity in the behaviour on varying the angles of 
incidence. However, these errors are neither negligible nor 
avoidable, but depend on the irregularity of the sub-reflector 
surface. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12 – Difference between theoretical and obtained 
      angles on varying the angles of incidence. 
 
3 Kinematics  
 
The antenna mechanism can be schematised as a 
conventional six-degrees-of-freedom platform-type parallel 
mechanism, known as a Stewart-Gough platform. The 
slender elements can in fact be considered six telescopic legs 
connecting the two platforms, one fixed with respect to an 
inertia system, and the other mobile, named respectively FB 
and MB. The joints are the result of the deformation capacity 
of the elements placed at the extremities of the legs, termed 
spindles. Since the deformation is localised in a limited zone, 
it can reasonably be schematised as point constraints placed 
on the mid-line of the axis of the cylindrical section. For each 
leg, one end is connected to the base platform by universal 
joint, while the other end is connected to the moving platform 
by a spherical joint. Six actuators on the legs are used to 
control the motion of the manipulators. 

Having defined the co-ordinate inertial frame FP (XP, YP, 
ZP) fixed at point OP on the inertial platform BP, and the 
frame FS (XS, YS, ZS), fixed to the sub-reflector and, 

consequently, to the mobile platform MP with its origin at the 
point OS, it is possible to define points O1i and Ci connecting, 
respectively, the legs and the fixed and mobile platforms, 
where i characterises the leg. Since these points must 
coincide with the universal and spherical point constraints, 
they will be located, as evidenced above, at the centre of the 
section in which the deformation is imagined to be located, as 
shown in Figures 13 & 14. 

The kinematics are studied using the schematisation 
indicated as simple legs (Ma, 1991). Each leg therefore 
consists of two prismatic elements, constrained at the 
extremities by a spherical and a universal joint, and whose 
relative movement is associated with the prismatic joint 
variable qj with i = 1,…6. The values of qj for each leg are 
grouped in the 6�1 vector q. 

The solution to the inverse kinematic problem is now 
possible: the vector q is determined on varying the position 
and orientation of the system associated with the sub-
reflector.  

Referring to Figure 13, the kinematic constraint equations  
for each leg can be written:  
 

)OC(COOOOO 11 SiiiiPSP ����� Qp     i = 1,…,6    (29) 

from which it is possible to calculate the unknown vector 

iiCO1  on varying p(t) = SPOO and Q(t), and in which all 
other vectors and matrices are known and depend on the 
geometry of the system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 13 – Reference system and base points. 

 
Moreover, referring to kinematic notation for simple legs 

shown in Figure 14, we have: 
 

iiiii qtt el ��� )(CO)( 1 ,  iPi 1OO�u , Sii OC�r  i=1,..,6 (30) 
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Fig. 14 – Kinematic notation for simple legs. 
 

The modulus of vector iiCO1 then gives the joint variable 
qi, which characterises the length of each leg: 
 

][][CO i
'T'

1 uQrpuQrp ������ iiiiiiq    for  i = 1,…,6    

(31) 
and thus: 
 

� � T 
654321  , , , , , qqqqqq�q                   (32)                                                       

 
The velocity problem is defined by the equation: 

 
J t = q�                                 (33) 

 
where J is the Jacobian matrix 6�6  (Gosselin, 1988) and 
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 is the twist vector of the MB, while is possible to 

solve the acceleration problem by the time derivative of 
eq.(33):  
 

  J t� + J�  t = q��                            (34) 
 

where �
�

�
�
�

�
�

p
ω

t
��

�
�  is the time derivative of vector t. 

 
To solve the inverse problems at the velocity and 

acceleration level, it is necessary to know the generalised 
velocity vector, i.e. the twist t and its time derivative. Since 

the analytical law for the input p(t) = SPOO and Q(t) is not 
available, it is necessary to obtain the time derivative in 
approximate form, using the derivative definition: 
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Thus it is possible to calculate the angular velocity vector of 
the MB �: 
  

)vect()vect( TQQΩω ��� �                       (37) 
 

and also calculate t� , from p�� e ω� , by: 
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Let �ji , �ji , bji , aji , the Denavit-Hartenberg parameters, 
defined (as in Angeles, 1997) for the j-th joint of the i-th leg. 
For simple legs, actuated joints are prismatic joints, whose 
parameters are the variables b3i , previously defined as qi. 

For this application, it is also important to calculate the 
variables of non-actuated joints: in fact the values of �1i  and 
�2i  are the angles of flexion in plane XPZP and YPZP and �4i  
is the torque angle of the i-th leg. As in Angeles, 1997: 
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We now define the versor of the j-th joint [eji]ki, in the frame 

Fki, for i = 1,…,6: 
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where: 

jiji �� sin�                                      (44)                  

 jiji �� cos�                                        (45)                  

It is then possible to calculate: 

iiiiiii 16
T
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T
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346 ][][ eQQQe ����                      (46)                  

 
in which ii 16 ][e  is the third column of the matrix Q. 

Thus �4i  derives from the following equation: 
 

iiiii 545
T
46 ][][ ��� ee                           (47)                  
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which can be rewritten in the form: 
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where: 
 

t4i = tan (�4i / 2)                                    (49)  
 

 
3.1  Numerical Simulations 
 
The kinematics modelling above was implemented in an 
algorithm, named Subreflector Positioning Algorithm, to 
evaluate the kinematics of the system under different end-
effector conditions. A numerical example of the application 
both in the angular oscillations effected to minimise tracking 
errors caused by disturbances, objective 1#, and to re-point 
the antenna, objective 2#, is reported. 

To evaluate the dynamic phenomena conditioning the 
operation of a satellite, measurements made by Alenia Spazio 
on ITALSAT were analysed. Continuous records are made of 
angular movements effected by the antenna actuators to zero 
tracking errors caused by a series of natural, or in any case 
unavoidable, phenomena. These are thermal distortion; 
residual rotation, i.e. residual satellite tracking errors in 
roll/pitch; normal mode, the effect of firing the thrusters to 
correct satellite orientation; and station keeping, due to 
accelerations of the satellite. For simulation purposes, the 
steps of the Subreflector Positioning Algorithm are shown 
schematically in Figure 15.The equations corresponding to 
each block of the diagram have been described above. 
Simulations were conducted under two conditions: normal 
mode and station keeping mode, shown respectively in 
Figures 16 and 17, and for a particular model of antenna, 
named W24 developed and certified by Alenia Spazio. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The time-histories of displacement, velocity and 
acceleration of the actuated joints, named iii q,q,q ��� , are 
reported in Figures 18 and 19, respectively for normal mode 
and station keeping mode and for i =1,…,6. 

It is then possible to obtain the non-actuated prismatic 
variables, i.e. the flexion and torsion of the spindles, which 
are titanium elements connecting legs to platforms, as shown 
in Figure 20. Instead Figures 21 and 22 show the time-
histories of flexion angles i1�  and i2�  and of torsion angles 

i4� , for normal mode and station keeping mode, 
respectively, and for i =1,…,6. 

It is then possible to consider whether the maximum 
strain values are supported by the spindles: for objective 1#, 
spindle resistance is sufficient in terms of both static and 
fatigue resistance, but insufficient if the antenna must be re-
pointed. In fact in this case the angles of  tracking error 
increase. 
 
4  Conclusions 
 
In this paper, the mechanism of the Gregorian offset antenna 
is considered as a Stewart platform actuated by six prismatic 
joints. 

A preliminary phase analysed the optics of the system 
deriving the laws of motion for the sub-reflector which act as 
input for the inverse kinematics problem, already largely 
solved. 

Modifying the optical system is of particular interest in an 
attempt to reduce tracking errors due to disturbances to which 
the satellite is subjected and which, in any case, are in the 
order of hundredths of a degree, but also for any greater re-
orientations with Earth that may be necessary. In this case, 
the errors increase in order of magnitude, as evidenced by the 
electrical simulation, as shown in Figure 10, with the 
manifestation of optical aberration phenomena due to 
external causes. 
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 Fig. 15 – Block diagram of the algorithm calculating the joint variables for different disturbance modes. 
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Thus the Subreflector Positioning Algorithm was 
developed to simulate the pointing of the antenna, both to 
minimise tracking errors caused by disturbances acting on the 
satellite and to re-tracking the antenna toward Earth. 

Results regarding actuated joints can be used to 
dimension linear actuators for the legs, while those 
concerning non-actuated joints determine whether the strains 
produced are tolerated by the antenna structure, above all by 
the spindles.  

In particular, the spindles were found to be inadequate for 
the performance of objective 2#, namely the re-pointing of 
the antenna. 

Future developments include the construction of antenna 
prototypes where motion is controlled by the extension of 
telescopic legs. The most interesting aspect is the 
development of linear actuators, with their functioning based 
on the resonance induced by piezoelectric phenomena. 

 
 
 
 
 
 
 
 
 
 
 
 
                  Fig. 16 – Disturbance in normal mode.                                  Fig. 17 – Disturbance in station keeping mode. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 18 – Displacements, velocities and accelerations ( iii qqq , ���,  for i = 1,…,6 ) in normal mode. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 19 – Displacements, velocities and accelerations ( iii qqq , ���,  for i = 1,…,6) in station keeping. 
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Fig. 20 – Strains on the

 
 
 

 

 

 

 

 

 

 
 

Fig. 21 – Torsions and flexions in planes XZ and YZ ( 4�

 

 

 

 

 

 

 

 

 

 

 

Fig. 22 – Torsions and flexions in planes XZ and YZ ( i4�
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Abstract: Two rigid bodies linked by six general constraints
form a new rigid body which may have different assemblies de-
pending on the type of constraints which are used. It might oc-
cur that some of the assemblies are infinitesimal mobile, shaky,
snapping or even mobile with one or more degrees of freedom. In
this paper we investigate the so called Stewart-Gough platform,
which consists of two rigid bodies linked by six legs and give an
overview of results concerning self mobility of this mechanism.
In the first three sections we give an overview on the work done
on self motions, introduce the mathematical framework and give
classical and more recently discovered examples. In the fourth
section of the paper we give a complete listing of all designs of
Stewart-Gough platforms that have Schönflies self motions.

1 Introduction

Stewart-Gough parallel manipulators (SGP) are under investiga-
tion since more than twenty years. Many different types have
found various applications (see section 2.5 in Merlet (2000)). A
typical SGP consists of a base and a platform joined by six lin-
early actuated legs. The legs are mounted to base and platform
via ball and socket joints. Using the SGP as robot manipulator
the six legs are actuated and allow by changing their length a
free motion of the platform within certain ranges. When on the
other hand all six actuators are locked and the legs have certain
lengths, then the SGP is a rigid structure in most cases. De-
pending on the geometry of the anchor points of the legs and
the pose in which the platform is, it can happen that the mech-
anism gains an infinitesimal degree of freedom (the SGP is in
a singular configuration, see Merlet (2000), chapter 5). Ma and
Angeles (1992) introduced the notion of architecture singularity,
defining that a SGP is architecture singular when it is singular
in every configuration it can obtain. But only recently the com-
plete list of all architecture singular designs was given by Karger
(1998) and Husty and Karger (2001). It turns out that for a gen-
eral SGP (anchor points not in a plane) only trivial designs can be

architecturally singular, but when the anchor points of platform
and base are in a plane (SGPS), then we have many non triv-
ial examples. The general case is completely solved in Karger
(1998). In Husty and Karger (2001) the nontrivial case of SGPS
is completely solved and it was shown that architecture singu-
larity of SGPS is governed by a set of four simple equations for
the design parameters. These four equations have a nice geomet-
ric interpretation which also can be found in Husty and Karger
(2001). Surprisingly there are well known designs, e.g the Griffis
left hand (Griffis et al., 1994) (see also Merlet (2000), page 40,
Griffis and Duffy (1993)), among these structures. All architec-
ture singular manipulators have self motions, although one has
to be careful, because it can happen that the self motion is com-
plex and only some isolated points of it are real. Then one might
be tempted to say that the manipulator has only a finite number
of assembly modes. Self motion has to be viewed from point of
algebraic geometry and the roots have to be counted in algebraic
way, because as we will show self motions are determined by a
set of algebraic equations.

When a SGP admits a one parameter self motion, then this
motion is determined by the geometry of the manipulator and the
length of five legs. The sixth leg has to fulfill an assembly condi-
tion to fit into the motion. Once this condition is fulfilled the leg
will take part in the motion prescribed by the five other. In many
of the cases on can add even more legs without disturbing the mo-
tion. This fact was already shown in the first paper which men-
tioned self motions of SGP (Husty and Zsombor-Murray, 1994).
Platform types with two parameter self motions have been dis-
cussed in Zsombor-Murray et al. (1995a) and Zsombor-Murray
et al. (1995b). A complete classification of the self motions of
the classical SGP is given in Karger and Husty (1998). "Clas-
sical SGP" was named that case where the anchor points are
located on a semi regular hexagon, which is obtained by cut-
ting the vertices of a regular triangle with a circle centered at the
centroid and radius smaller than the radius of the circum-circle.
This is the design used in the most applications. The subcase
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of linearly related platform and base anchor points was treated
in Kong and Gosselin (2001). This case was already known to
Bricard (1906) (and even earlier to Chasles, see page 3 in Bricard
(1906)). Sommese et al. (2002) show that an extended version of
numerical continuation can be useful to find the complete solu-
tion set of self motions of SGP .

From the remark in the last paragraph it is clear that the
problem of self motions of parallel manipulators has also a his-
torical dimension. Self motions are related to the spherical mo-
tion problem, which was addressed in a mathematical compe-
tition (Le Prix Vaillant) organized by the French Academy of
science in 1904. Borel and Bricard won both prizes but did not
solve the problem completely. Nevertheless all examples they
found in their thorough studies are examples of self motions of
parallel manipulators. In Bricard’s paper one can even find a fig-
ure of the Griffis left hand. An overview on the history of the
problem can be found in Husty (2000).

This paper is organized as follows: In Section 2 we set up
the mathematical framework and all the notions we will use. In
Section 3 we show some examples of self motions to explain the
methods which are used to find the geometric conditions for the
design parameters. Section 4 gives a complete investigation of
all SGP which can have a Schönflies self motion1.

2 Mathematical framework

For the description of the pose of the platform with respect to
the base we use Study’s parameterizations of Euclidean displace-
ments. The transformation from the platform coordinate system
(
�

, position vectors � ) to the base coordinate system (
���

, posi-
tion vectors ��� ) is written �����
	��
using the ���� - transformation matrix

������
����

��� �������� � �!�" � ���#$&%(' # � ��) ' " � � � ' � � " ) ' � � #+*$&%(' " � � � ' # � � ) ' � � " ) ' � � #+*$&%(' � � � ) ' � � � � ' # � " ) ' " � #+* (1)

, , ,� � � ) � �� ) � �" �-� �# $&% � � � � ) � " � #.* $&% � � � " �/� � � #.*$&% � � � � � � " � # * � �� ) � � � ) � �" ��� �# $&% � � � " ) � � � # *$&% � � � " ) � � � #+* $&% � � � " ��� � � #.* ���# ) �!� � ) ���� � ���"
0 11243

where 5 ��68794:;6<77 :;6<7=>:?687�A@ (2)

The 6<B are the Euler parameters and they have to fulfill an or-
thogonality condition with the remaining four parameters C B6 � C � :;6 9 C 9 :;6 7 C 7 :?6 = C = �ED @ (3)

1This section gives a new and complete investigation of a special case of
self motion to show how complicated the computations are. The reader only
interested in an introduction to the topic can skip this section and read only the
theorem at the very end of section 4.

This parameterization is essentially (up to a double covering) the
dual quaternion parameterization of the Euclidean motion group
and it has the following geometric interpretation (due to Study).
Eq.3 can be viewed as a six dimensional quadric F 7G in a seven
dimensional projective space HJI @ This space is called kinematic
image space or Study parameter space.2 F 7G is known as the
Study-quadric. Every point on F 7G (with the exception of one
generator space 6 9 �K6 7 �L6 = �K6 � �MD ) represents a valid
position and orientation of a given coordinate frame with respect
to an arbitrarily chosen reference frame.

It was shown in Husty (1996) that the direct kinematics of
all SGPs is governed by a set of seven quadratic equations, one
of them being Eq. 3 and the other six having the general formN��PO % � �# � � � � �/� �� � � �" * � Q %(' �# � ' �� � ' �� � ' �" * )$ � �# %SR>T �VUXW��ZY\[ * � $ � � � % ) R>T �VUXW��VY\[ * �$ � �� %SR>T ) UXW ) Y\[ * � $ � �" %SR>T �VUXW��VY\[ * �$ � �" %SR>T �VUXW ) Y\[ * � QA] � # � � % U^[ ) Y\W * �� # � � % Y T ) R [ * � � # � " %SR W ) U T * )� � � � %SR W��/U T * ) � � � " %SR [��ZY T * )� � � " % U^[��VY\W * � % � # ' ��) ' # � � * %SR ) T * �% � # ' � ) ' # � � * % U ) W * � % � # ' " ) ' # � " * % Y ) [ * �% � � ' � ) ' � � � * % YV�/[ * ) % � � ' " ) ' � � " * % U_� W * �% � � ' " ) ' � � ".* %SR � T *a` � , 3 (4)

where bdc<e+fgeihkj are the coordinates of a point in the platform frame,bdl�eimne+opj are coordinates of a point in the base frame, q is the
joint parameter (leg length). Furthermore it was setrts ��l 7 :?m 7 :uo 7 :?c 7 :uf 7 :vh 7Pw q 7
The solutions of the seven quadratic equations constitute an
affine variety xnbzy B e{F 7G j . This variety x represents the solutions
of the direct kinematics in the kinematic image space. The poly-
nomials determining x generate an ideal, whose elements are
obtained by linear combination and multiplication of the seven
polynomials with coefficients from | . In the general situation the
variety x will be zero dimensional, because we have seven equa-
tions and seven unknowns. It is well known, that this system has
maximal 40 real solutions (Wampler (1996), Raghavan (1991)).
An algorithm to solve the system was presented in Husty (1996).
Quite recently it was shown, that within the ideal one can gener-
ate additional polynomials which represent additional constraints
between the rigid bodies. The zeros of these additional polyno-
mials determine quadrics which pass through all forty solutions.
From this follows that one can construct redundant SGP (more
than six legs, for SGPP even infinitely many) having all solu-
tions of the direct kinematics in common. This has also the con-
sequence that adding leg would not change the singularities of
such a SGP. It shows that one has to be careful in adding to avoid
singularities.

2For a more detailed explanation see Bottema and Roth (1990), Ravani and
Roth (1984) and Husty (1996).
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It is not surprising that for special platform and base geome-
tries it can happen that the solution variety x is not zero dimen-
sional. Then xnbzy B e+F 7G j no longer consists of discrete points, but
of a curve, or even of a surface, on F 7G .3
Remark: This is now the point to report more on the work
which was done by Borel and Bricard more than 90 years ago.
The question of the French Academy was to determine all mo-
tions which have as many spherical paths as possible. Bricard
presented many examples which he got pursuing a very geomet-
rical approach. Borel used analytic and algebraic methods. Both
were essentially starting with the same equation (Eq. 4) we have
presented in this section. Because of the lack of algebraic manip-
ulation systems they had to make an important restriction. They
assumed for all motions that they should have linear relations
between the direction cosines, which yields quadratic or linear
relations between the Euler parameters. All their results are clas-
sified with respect to the type of relation which can exist between
the Euler parameters. There are only the following possibilities:

1. Three relations: the Euler parameters are determined, the
motion can only be a translation. This yields only trivial
cases, e.g. Platform and base anchor points congruent and
all legs of the same length.

2. Two linear relations, then the motion is represented by a
line in the Euler parameter space and the motion preserves
one direction; this is a Schönflies motion. They give some
examples without claim of completeness. Within this case
there are some interesting and well known motions. One
example is the motion where all points of the moving body
travel on spherical paths (see e.g. Bottema and Roth (1990)
(page 324), Bricard (1896) or Krames (1937)). This type
of motion was the first reported self motion of a parallel
manipulator (Husty and Zsombor-Murray, 1994).

3. A linear and a quadratic relation. The motion is represented
by a conic in the Euler parameter space. Into this type of
motion belong the self-motions of platforms investigated in
Zsombor-Murray et al. (1995a) and Zsombor-Murray et al.
(1995b).

4. Two special quadratic relations. The motion is represented
by a cubic in the Euler parameter space.

5. Two general quadratic relations. The motion is represented
by a quartic in the Euler parameter space.

6. One linear relation. The motion is two parametric and rep-
resented by a plane in the Euler parameter space.

7. One quadratic relation. The motions is two parametric and
represented by a quadric in the Euler parameter space.

3Examples of 2-DOF self motions are known. If non-trivial 3-DOF self mo-
tions are possible is not known. They would correspond to solids on } �~ .

8. No (linear or quadratic) relation between the Euler param-
eters. The general case. Borel and Bricard have almost no
results, but in the investigations of self motions of paral-
lel manipulators many motions which belong to this type
have been discovered (Karger and Husty (1998), Husty
and Karger (2000), Husty and Karger (2000b), Karger and
Husty (1997)) .

3 Examples of Self Motions

3.1 Self motions of 3-3 Stewart-Gough Platforms

The anchor points of this platform type are on the vertices of
triangles. Each vertex of the base is joined to two vertices of the
platform and vice versa. This platform type can be considered
as a polyhedron consisting of eight triangular shaped faces (a
general octahedron). From this fact it is clear that any assembly
mode of the 3-3-platform which forms a convex octahedron is a
rigid body. This proposition follows from an old theorem due to

Figure 1: 3-3 Platform

Cauchy (1813), which states that a convex polyhedron with rigid
faces, but hinged at the edges, is completely rigid. A convex
assembly of a 3-3 platform can neither be singular (infinitesimal
mobile) nor mobile. So, if a 3-3 platform has a self motion it
must be non-convex. In 1897 Bricard gave a complete list of
all flexible octahedra (Bricard, 1897). From the remark above it
is clear that therefore the self motions of the 3-3 platforms are
known (see also Stachel (1987), Conelly (1978) and Wunderlich
(1965) ). Bricard identified in a thorough and nice geometric
investigation 3 different types of such flexible octahedra. In the
language of 3-3 SGP they can be characterized in the following
way:�

Type 1: Platform and base have an axial symmetry.�
Type 2: Platform and base are symmetric with respect to a
plane.
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�
The manipulator has a position where it is completely
folded in one plane.

A particularly nice version of type one was found by Blaschke
(1920). The anchor points of the manipulator are on a closed
hexagon consisting of six edges of a cube. It is relatively easy to
see that the three anchor points on the platform are free to move
on circles. Fig.2 shows this platform in a starting position, an
intermediate position and an end position. For a practical appli-
cation it is clear that the manipulator cannot reach the end po-
sition because of leg intersection and the start position because
of intersection of the leg with the base and the platform plate.
This sequence of positions of Blaschke’s 3-3-Platform was al-
ready published in Blaschke (1948).

Figure 2: Blaschke 3-3 Platform

Fig. 3 and Fig. 4 show photographs of a simple model of
Bricard’s type 3 flexible octahedron in a general and a flat posi-
tion.

Figure 3: 3-3 Platform
(Bricard Type 3)

Figure 4: Bricard Type 3 flat
position

3.2 Griffis-Duffy Platforms

In Griffis and Duffy (1993) and Griffis et al. (1994) two types
of mechanisms are proposed which will be called Griffis-Duffy
Platforms (GDP). Both are special types of SGP. One of them
is called “midline to apex” embodiment and the other “apex to
apex” embodiment. The anchor points of the spherical joints on

platform and base are arranged on the vertices of a triangle and
the remaining three each on the edges of the triangle. Here we
will summarize briefly the results of Husty and Karger (2000)
on the “midline to apex” embodiment (Fig. 5). Base and plat-
form consist of an equilateral triangle and the remaining anchor
points are the mid points of the three edges. This special case of
GDP will be called a “Special Griffis-Duffy-Platform” (SGDP).
Using the coordinate systems shown in Fig. 5 coordinates of both

Figure 5: Manipulator coordinate systems

anchor points in base and platform are listed in Table 1.

A B C a b cH 9 -p 0 0 � 9 �7 �i� =7 0H 7 0 0 0 � 7 D �&� � 0H = p 0 0 � = w �7 �i� =7 0H�� � 7 � � =7 0 ��� w � D 0H�� 0 � � � 0 �8� 0 0 0H G w � 7 � � =7 0 ��� � D 0

Table 1: Coordinates of anchor points

3.2.1 Architecture Singularity

For an arbitrary SGP the transformation of the joint velocities
into the infinitesimal twist of the produced motion is written as��� ����e (5)

where
�

is the vector of joint velocities and � is the twist of the
platform.

�
is a ��/� -matrix and it is well known that its rows

consist of the axis coordinates of the linear actuator axes H�B��8B .
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��� � denotes the position of a joint center of the platform mea-
sured in the base coordinate system and 	 is the transformation
matrix from platform to base.� �� �
	 ��� @ (6)

To compute the Jacobian matrix
�

for the SGDP we substitute
the coordinates of Table 1 into Eq. 6, compute ��� � and the axis
coordinates of the legs. For the first leg we getbaD s ��bz��C � 6 = w ��C = 6 � :u��C 7 6 9 w ��C 9 6 7 :v�g6 9 6 = :?�g6 � 6 7 w� � �&6 7 6 = � � �&6 � 6 9 j s w ��bz��C � 6 7 w ��C 7 6 � :u��C 9 6 = w ��C = 6 9 :bS6 9 6 7 w 6 � 6 = j��P:��� bd687� w 6879 :?6877 w 6<7= j�� � �&j s��C � 6 9 w ��C 9 6 � :u��C = 6 7 w ��C 7 6 = :�� bS6 7� :?6 7 9\w 6 77 w 6 7= j��X:EbS6 9 6 7 :;6 � 6 = j�� � �^: � s��C � 6<� w ��C 7 6 � :u��C 9 6 = w ��C = 6 9 :bS6 9 6 7 w 6 � 6 = j��P:��� bd687� w 6879�:?6877 w 6<7=�j�� � � s��C � 6 = w ��C = 6 � :u��C 7 6 9 w ��C 9 6 7 :�g6 9 6 = :v�g6 � 6 7 :v� � ��6 7 6 = w � � ��6 � 6 9.� @ (7)

Similar expressions build up the whole matrix
�

. Using an alge-
braic manipulation system to compute the determinant of

�
we

get  !¡k¢ � �£D @ This tells that
�

is singular independently of the
joint parameters and therefore of the pose of the platform. The
SGDP is architecture singular.

3.2.2 Self Motions of SGDP

In this section we will show that the SGDP platform is not only
architecture singular but also movable from every point of its
workspace. To show this we will go back to the constraint equa-
tion Eq. 4 and the equation for F 7G (Eq.3). Because of the six
legs there are six constraint equations y�¤&ez¥V� � e @k@k@ ei� and F 7G .
They make a system ¦ of seven quadratic equations that has
to be solved for the eight homogeneous unknowns 6§Bie�C&B�e¨bd©ª�D�e @k@�@ ei�Aj . The affine variety x�bay ¤ e{F 7G j consisting of the zeros of
the polynomial equations y ¤ ��D�e�6 � C � :J6 9 C 9 :J6 7 C 7 :p6 = C = ��D
is at least one dimensional. We will show that x is a curve. This
curve represents in the kinematic image space the one parame-
ter motion in which the platform can move without changing leg
lengths. Substituting the coordinates of Table 1 into Eq. 4 we get
six constraint equations y�¤&e¨b«¥Z� � e @�@k@ e{��j one of them, y 9 , is
displayed below, all the other five have a similar structure.y 9 s �g687� �¬:;��C � 6 9 � w �&C 9 6 � � w ��C = 6 7 �¬:?�&C 7 6 = � w�g687=i� w �&� � �6 � 6 = ��:?�g6<79®� w �g6877 �¯:v�&� � �&6 9 6 7 ��:bS687=\:;6<79�:;6<7� :?6877 j r 9 :v�6 7 C = � w ��C 7 6 = �&:��C � 6 9 � w ��C 9 6 � �P:u��C 9 6 = � � �^:v�6 7 C � � � � w (8)��C 7 6 � � � � w ��C = � � ��6 9 :;�<bSC!7=�:;C!77 :?C!7� :;C!79gj���D @

From the six constraint equations five difference equations are
produced: ° 9 �±y 9 w y = e+° 7 �£y 7 w y � e+° = �±y�� w y G e.°��¬�y 9 w y 7 e+°��^�Ey 9 w y � . The equations ° B have the characteristic
property that they are all linear in C B . We take three of the differ-
ence equations ° 9 e+° 7 e+° = and Eq. 3 and solve this linear system²�³

for C B . Substitution of the solutions of
²4³

into ° � e+°�� andy 9 yields a system
³

of three nonlinear equations for the four
remaining homogeneous unknowns 6§B . It is easy to show that no
more independent equations can be generated from the original
system ¦ . A close inspection of the new system

³
shows that °4�

is of degree four, y 9 is of degree eight and ° � takes the form° � s bd687=>:?687� :;6<79�:;6<77 jkbd����7 w �k�87 wr � w r � w r �^: r �^: r � : rp´ j���D @ (9)

The first factor in °�� cannot be zero because the 6 B are the
Euler parameters of an Euclidean displacement and the second
factor depends only on the design of the manipulator and the
leg lengths. We will call the second factor an assembly con-
dition, because ° � allows only for one interpretation: Either° � is fulfilled, which means one linear condition on the legs
is fulfilled, or this condition is not fulfilled, but then the ma-
nipulator cannot be assembled with the six given legs. Let
us assume that ° � is fulfilled. Then only two equations re-
main in

³
for four homogeneous unknowns. One of the un-

knowns e.g. 6 9 can be eliminated and the remaining equationµ bd6 � ei6 7 e�6 = e r 7 e r = e r � e r �&e r G j��¶D represents the affine so-
lution variety x of the original set of seven nonlinear equations.
After specifying a set of joint parameters b r 7 e r = e r � e r �&e r G j
the equation

µ bS6 � ei6 7 e�6 = jJ�·D represents a curve in the Study
parameter space which corresponds to a one parameter motion
which the platform will perform without changing the joint in-
puts. Inspection of

µ
reveals that it has special algebraic (and

geometric) properties because it can be factored intoµus � 7 � bd6 � e�6 7 ei6 = jkbd� G bS6 � ei6 7 e�6 = j�j 7 ��D @ (10)� G is a sixth degree polynomial (which is squared) and it is the
determinant ¸ of coefficients of the linear system

²4³
which has

been used to solve for C B . This polynomial cannot vanish in the
case in discussion, so the motion is represented by the polyno-
mial of degree 20. Different subcases can occur for different
values of leg lengths because then ¸ could vanish and the elimi-
nation process has to be modified . A detailed discussion can be
found in Husty and Karger (2000). Note that the polynomial of
degree 20 in Eq. 10 does not necessarily show the order of the
overall motion curve because it represents only a projection of
this curve onto the 6 7 6 = plane of the Euler parameter space. A
detailed discussion on this fact is in Sommese et al. (2002) where
continuation methods are used to find all components of different
dimensions of the solution variety x .

4 Schönflies Motions

In this section a complete discussion on the Schönflies case of
self motions of SGP is presented. The essential question is: how
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does the geometry (the design) of a SGP have to look like, so
that the manipulator is able to perform a Schönflies motion. This
case essentially has been discussed in detail by Borel (1908), but
there was no proof of the completeness of the results.

Schönflies motions (S-motions) constitute a four dimen-
sional subgroup

³ � of the six dimensional group of Euclidean
motions. It consists of all translations combined with all rota-
tions about one fixed direction. In what follows we will sup-
pose that coordinate systems are chosen in such a way that this
fixed direction coincides with the z-axis of the coordinate sys-
tems. With this choice of the coordinate system any element ¹
of the Schönflies group

³ � can be written in the following form

¹K�
º»»
¼ � D D D½ 9¿¾ÁÀ�Â�Ã w ÂiÄ�Å�Ã D½ 7 Â�Ä«ÅXÃ ¾ÁÀAÂ�Ã D½ = D D �

ÆkÇÇ
È (11)

For the following it is convenient to parameterize
³ � with help

of Study parameters 6 � e�6 9 e�6 7 ei6 = e�C � e�C 9 e�C 7 e�C = . The group
³ �

is then characterized by the equations 6 9 �£6 7 �£D . In the fol-
lowing we are only interested in non trivial cases, so we suppose6 �ÊÉ�ËhÁÌgÍ�Î ½ @ and 6 = É�ÏhÁÌgÍ�Î ½ @ The Study parameters are ho-
mogeneous parameters so we can normalize 6 � � � . With this
assumptions the Study condition yields C � � w 6 = C = .

Points of the moving space, being on lines parallel to the
z-axis have congruent trajectories in a S-motion which has the
z-axis as fixed direction. This means that if one point moves on
a spherical path in such a motion all points on the line parallel
to the z-axis through the point move also on spherical paths. For
this reason it is enough to study trajectories of the points of one
plane in the moving space. Without any restriction we choose
the plane Ð��ED in the moving space.

By a Schönflies-Borel-Bricard motion (SBB-motion) we un-
derstand any S-motion, which has at least four lines parallel to
the z-axis and all points of these four lines move on spherical tra-
jectories. As

³ � is four parametric, one can choose three spher-
ical constraints arbitrarily to obtain a one parametric S-motion
with three one parameter sets of spherical paths (trivial case,
the similar to a general space motion with just five spherical
paths). The natural question arises now: Given three spherical
constraints, are there any other points which move on spherical
paths? To answer this question the problem has to be formulated
more precisely. Let us take three lines ( Ñ 9 eiÑ 7 eiÑ = ) in the moving
space and three lines (

µ 9 e µ 7 e µ = ) in the fixed space, all of them
parallel to the z-axis (i.e. the fixed direction of the S-motion).
Now three points Ò 9 e�Ò 7 e�Ò = eÓbSÒ�B¨ÔvÑ(B�ei©X� � e @�@k@ �Aj and three
points Õ 9 e+Õ 7 e+Õ = eÓbaÕ;B�Ô µ Bie�©Ö� � e @�@k@ �Aj are chosen. Ac-
cording to the statements above we can prescribe three distances
between points Ò B Õ B to obtain a one parametric S-motion. Now
we have to look for constraints for the geometry of the anchor
points and the distances between them, so that more than three
points move on spherical paths. We will show within this section
that such constraints can be imposed and therefore SBB-motions
exist for any choice of Ò B�e+Õ;B�e{Ñ(B�e µ B�e�©�� � e @k@k@ ei� .

We denote Ò B��Ïbdc×Bie{f.B�eihÁB®j and Õ?Bp�Ëbdl-B�e{m-Bie{o\B®j.e�©¬�� e @k@k@ ei� . Without restriction the coordinate systems in moving
and fixed spaces can be specialized so that h B ��D�eic 9 �Øf 9 �f 7 �ED�eil 9 ��m 9 ��m 7 �ED�e{o 9 �ED holds.

4.1 Equations for SBB-motions

Let us suppose that we have a SBB-motion with points Ò B ei©P�� e @k@k@ e�� having spherical trajectories with centers at ÕvB . Let y8B
be the constraint equation expressing the fact that the distance q�B
between Ò�BaÕ;B is constant during the motion(Eq.4). Having a
S-motion this equation simplifies to:y B ����C 9gÙ l B w c B :;6 = bzf B :vm B j®Úd:�&C 7 Ù m B w f B w 6 = bdc B :vl B j®Ú!:?�&6 = bal B f B w m B c B j :��bS6<7= w � jÁbam B f B :¯l B c B j�:�b r B :¬�&C = o B :¬�&C!7=gjÁb � :¬6<7=�ji:�8bdC!79 :;C!77 j��ED�e (12)

Substituting the coordinates for the points Ò/B and Õ;B into
Eq. 12 we obtain four constraint equations y�B��ÛD . From
these equations we can derive the following difference equa-
tions ° ¤ �Üy ¤ w y 9 ez¥t�Ü�!e{��e�� . SBB-motions are now the
one parametric solutions of the system of polynomial equations³ �ÞÝgy 9 e+° 7 e.° = e.° �&ß . Furthermore we denote F ¤ � r ¤ w r 9 .
As we have excluded translations, we can take 6 = for the pa-
rameter of the motion. Now we have four equations for three
unknowns C 9 eiC 7 eiC = . This means we have to have constraints onl^Bieim¨B�e+o>Bieic×Bie{f.B�eihÁB�e�qÓB to obtain a solution.

4.2 The singular case

Equations °à¤-��D�ez¥��
�!e{��e�� are linear non-homogeneous equa-
tions in the unknowns C�B�e�©�� � e+�!ei� @ Let Õ be the matrix of this
system. Then we have (up to nonzero factors)Õá� (13)º¼ l 7 w c 7 w 6 = bdl 7 :vc 7 j o 76 = bam = :vf = j�:vl = w c = w 6 = bal = :uc = j�:vm = w f = o =6 = bam^�P:vf+�gj�:vlX� w cA� w 6 = balX�\:ucA�Ój�:vm-� w f.�âo4�

ÆÈ @
From now on we shall suppose that the points Ò 9 eiÒ 7 e�Ò = are
not collinear, which means that c 7 f = É�ËD @ Moreover, we can
rotate the coordinates systems in such a way that we have c 7�ãD�e{l 7;ä D @ There are now two basic possibilities, either Õ is
regular or Õ is singular.

At first we will treat the singular case. Let the rank of the
matrix Õ be equal to one for all 6 = @ Then computing suitable
sub-determinants of Õ , we obtain m = � w f = e§m-�-� w f+��e§l 7 �c 7 e�l = �Êc = eil � �tc � e�o 7 �åo = �åo � �åD�e which means that
points Õ 9 e @�@«@�@ Õ � lie in a plane perpendicular to Ð -axis and con-
figurations Ò 9 e @«@�@ e�Ò � and Õ 9 e @«@�@ e{Õ � are indirectly congruent.
Substitution into the remaining equations shows that we have
no solution in this case. So let us suppose that this case is ex-
cluded. (Either one of oPB is not equal to zero or configurations
are not indirectly congruent). This means that Õ has rank two iff
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 !¡k¢ÓbaÕtjª�æD @ Computation shows that  !¡k¢ÓbzÕtj is a polynomial
of degree two in 6 = e which must identically vanish. This yields
three equations � � �æD�ei� 9 �æD�ei� 7 �æD for the geometry of the
configuration from the coefficients of the different powers of 6 = .
From the last column of the matrix Õ we see that these equa-
tions are linear homogeneous in o 7 e+o = e+o � . Let H be matrix of
the system � B �ED . Then we have (up to linear combinations)

Hå� º¼ c = m � w l � f = w m = c � :?l = f � w c 7 m � w l 7 f �c = l � w f � m = w l = c � :uf = m � w c 7 l � :vl 7 c �l = m � w c � f = w m = l � :vc = f � w c 7 f � w l 7 m �f = l 7 :?c 7 m =l = c 7 w l 7 c =f = c 7 :ul 7 m =
ÆÈ (14)

We have to distinguish again different cases according to the rank
of the matrix H @
Case A: Let Let H be regular. Then the only possible solution
of the system � B �çD is o 7 �Üo = �èo � �çD @ From equa-
tions ° 7 �KD�e+° = �KD we can solve for C 9 eiC 7 uniquely, as the
rank of Õ is equal to two. We substitute the result into ° � �éD
and we obtain a polynomial of degree four in 6 = which must
vanish. This yields five equations from the coefficients of the
different powers of 6 = @ Let us denote by ênë the coefficient of6 ë = @ Then the equations ê 7 w ê�� w ê � ��D�eiê = w ê 9 �ËD
are linear in l^� and m-� and we solve for them. The solution
depends quadratically on the coordinates c!�&e+f+� of the fourth
point in the moving system. The obtained relation is an inver-
sion. This inversion will be discussed later in the regular case,
so we skip here the details. But here there are still three more
equations. We substitute the solutions for l � e{m � into equationsê � �æD�e{ê = �æD�eiê � �æD�e and see that the resulting equations
are linear in F 7 e{F = e{F � . The determinant of this system of equa-
tions is nonzero unless l =gì c = �íl 7 ì c 7 � w m =Óì f = e . Singu-
larity of this system would cause that H is singular and this was
excluded. This means that we can always compute F 7 e+F = e+F��
without any constraint for the geometry and for any choice ofcA�&e+f+� (except for the center of inversion). The obtained motion
is the known Borel-Bricard motion (BB-motion)where all points
(with exception of the points of the Ð -axis) are running on spher-
ical paths. Platform manipulators with this type of self motion
were treated in Husty and Zsombor-Murray (1994). The mo-
tion is a line symmetric motion, a fact which was discovered by
Krames (see Bottema and Roth (1990), pp.324).

Case B: The rank of the matrix H is equal to one. This means
that all sub-determinants of order two of the matrix H must be
equal to zero. Let the configurations of points Ò B and projections
of Õ;B onto î��
D be not congruent. Then by rearranging pointsÒ�B we obtain c 7 É�El 7 @ Sub-determinants of the second and third

column yield

l � � l 7 f = c��!:�bdl = c 7 w l 7 c = j�f+�c 7 f = eàm � � m = f.�f = eo4�-� o 7 f = c � :�bao = c 7 w o 7 c = j�f �c 7 f = @ (15)

Points Õ 9 e @«@�@ e{Õ � lie in a plane and the conditions mean that the
configurations of points Ò B and Õ?B are affinely equivalent. If the
configurations of points Ò B and projections of ÕvB are directly
congruent, we obtain a special case of the previous equations.

Case B1: Let ï �£bdc 7 m = w f = l 7 j 7 :_bdl 7 c = w l = c 7 j É��D @ Then
we solve for C 9 e�C 7 from ° 7 �ED�e.° = �ED and substitute the result
into the equation °��-��D @ We obtain a polynomial of degree two
in 6 = which must vanish. This yieldsc��-�-c 7 bdc = m = w f = l = j Ù w l 7 l = bdc 7 :vc = ji:c 7 bdl 7= :?m 7= j�:vl 7 bdc = l 7 w f = m = jðÚ ì�Ù m = ï�Ú®ef � � w c 7 l 7 bdc = m = w f = l = j Ù m = bac 7 w c = ji:f = bdl = w l 7 jðÚ ì�Ù m = ï�Ú @ (16)

We have obtained a SBB-motion where the points of exactly four
lines move on spherical trajectories. The fourth point in the mov-
ing system is given by Eq.16.

Case B2: Let ïK�ÜD @ Then configurations of points Ò/B and
projections of Õ;B on the î���D plane are similar, l = ì c = �m = ì f = �ñlX� ì cA�Z�ñm^� ì f+�V�ñl 7 ì c 7 e and only one condition
remains, which is the condition that the points Ò 9 e @�@«@ e�Ò�� lie on
a circle. This means that all points of the cylinder with the cir-
cumscribed circle of points Ò 9 e�Ò 7 e�Ò = as directing circle have
spherical trajectories.

Denote ò the cylinder of revolution which passes throughÒ 9 e�Ò 7 eiÒ = with generators parallel to the Ð w axis and ó the
equivalent cylinder in the fixed space. We take arbitrary plane
sections ô in the moving space of ò and plane section õ of ó in
the fixed space. Now we join points corresponding in the affin-
ity ö and obtain a movable system with infinitely many spheri-
cal trajectories. This is a special case of a well known Bricard
case with two conic sections in projective correspondence. These
structures are always movable, what is interesting here is that the
motion is a S-motion. This finishes the discussion of the case B.

Case C:. The rank of the matrix H is equal to two. This happens
iff the determinant ¸ of the matrix H is equal to zero and the
previous case is excluded. Let us suppose that this is the case.
From equations ° 7 �ED�e.° = �ED we express C 9 e�C 7 and substitute
the result into °��÷�øD @ The coefficient with C = in °�� must be
equal to zero because the rank of the linear system for C 9 e�C 7 e�C =
is equal to two. ° � is then a polynomial of degree four in 6 = ,
let ê B be the coefficient with 6 B= in ° � . We obtain five equa-
tions ê � �ùD�e @�@«@ e{ê � �úD @ Equations ê��_�ùê = w ê 9 �ùD�eê G �æê � w ê � :��ê 7 �æD do not contain F 7 e{F = e{F � e we can
express from them l^��eim-� and obtain the inversion described be-
low. Remaining equations are ê � ��D�e{ê 9 ��D�e{ê 7 �ÞD�e they
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are linearly dependent and we can always express from themF = e{F�� @ We are now left with equations � � �£D�e{� 9 �£D�ei� 7 �tD�e
which are linear homogeneous equations for o 7 e+o = e{o � and we
know that exactly two of them are linearly independent. From
one of them we express o � and one linear equation of the formêû�íü�:Êô8yÊ�øD�e remains, where ô
�ío =gì o 7 @ ü and y are
cubic expressions in f � e{c � e which means that we can choose ô
arbitrarily, but then the point Ò�� is bound to lie on a certain cu-
bic. What remains is the equation ¸ø�£D @ It factorizes into two
factors. One of them is an expression of degree six in c!�&e+f+�&e let
us denote it ¸ 9 �tD @ Let us treat this case at first. We can show
that ý ¸ 9 ��ü 9 ü 7 e
where ü�B��Ïü�:åô8Bzy�e ý is a constant and ô8B are roots of the
quadratic equation

bdc 77 w l 77 jiô 7 :v��bdl 7 l = w c 7 c = j�ô¬:uf 7= :vc 7=Pw m 7=ªw l 7= ��D @
This has the following consequences: We can choose pointsÒ 9 e�Ò 7 eiÒ = and Õ 9 e{Õ 7 e{Õ = quite free ( o 7 É�ÜD ). Then all
points which are common to cubics ü��tD�e+y/�tD run on spher-
ical paths, moreover, if ô��þô 9 or ô·�èô 7 are roots of the
quadratical equation, we have a whole cubic of points running
on spherical paths. Cubics ü �£D�e{y/�éD have always five com-
mon points (as they are circular, we have four common points
at infinity), they are points Ò 9 eiÒ 7 e�Ò = e the center of inversion
and one more point, given by the same formulas as in the case
B1, and the rank of H is equal to one, we obtain the solution
from m � @ Special case happens, if m 7=V�Øf 7= @ In that case cubic
curves yÿ�KD and ü?�KD are the same, the value of ô is given
and we have the whole cubic of spherical points. The case of the
second factor of ¸ being equal to zero leads to the case where
configurations of Ò 9 eiÒ 7 e�Ò = and projection of Õ 9 e+Õ 7 e+Õ = are
indirectly similar and the rank of H is one.

4.3 General Case

Now we suppose that  !¡k¢ÓbaÕtj É�tD holds. We express C 9 eiC 7 eiC =
from ° 7 �íD�e.° = �íD�e.° � �íD . We substitute the result intoy 9 and obtain a polynomial of degree eight which has to vanish
identically to obtain a SBB-motion with four points moving on
spherical paths. We denote by ö&B�ei©P�tD�e @�@k@�� the coefficients at
the respective powers © of 6 = in this polynomial. This yields nine
equations öB-�·D as necessary and sufficient conditions for the
geometry and distances of possible points moving on spherical
paths for general F�m�m motions. Unfortunately these equations
are quite involved (e.g. ö�� and ö � have 1425 terms, ö I and ö 9
have 1880 terms, ö G and ö 7 have 1819 terms, ö� and ö = have
2048 and ö � has 1172 terms). To simplify these equations we
use suitable linear combinations. We denote

� B��EöB�:vö����<Bie � ����B���ö	����B w öB�e�©���D�e @�@k@ e{� (17)

Then the following equations are the most significant ones:î 9 � � 7 w � � w ö � �ED�e î 7 � � I w � �^�EDî = � � G w � � � ��D�e î � � � = w � � 9 ��D @ (18)

Together with equations � � �ÊD�e � 9 �
D�e � 7 �ÊD�e � I �ÊD�e � � �
D
the form a system equivalent to the original system of equationsö�B^�ÞD�e�©¨�·D�e @k@�@ e � . The equations î 9 and î 7 do not contain
distances and z-coordinates and factorize into:î 9 �
î 9{9 î 9 7 �ED�e î 7 �Êî 7 9 î 7{7 �ED (19)î�B ¤ are linear in l^� and m-� . To solve the system î 9 �åD�e+î 7 �D we have to combine one factor from each and solve it. This
way we obtain four systems consisting of two equations for two
unknowns l � eim � . Surprisingly all four systems have the same
solution. This means that we have got a correspondence between
the points of the moving system and projections of the points
in the fixed system onto the plane îË��D of the fixed space.
By translating the coordinate system in the plane Ð÷�KD in the
moving and î � D in the fixed spaces this correspondence can
be written in the following form:

Hå� Ò 7 �¯:?Ò = �Ò 9 b � 7 :v� 7 j e 
t� w Ò = �¬:?Ò 7 �Ò 9 b � 7 :?� 7 j (20)

It is easy to show that by a suitable rotation of the coordinate
system in the moving space and identifying both spaces the cor-
respondence becomes an inversion �

� s 6��� ü×66 7 :?C 7 C��8� ü��6 7 :?C 7 @ (21)

Looking at Eq.20 we see that this procedure cannot be done ifÒ 9 �ED holds. As Ò 9 �ébal 7 c = w l = c 7 j 7 :/bam = c 7 :nl 7 f = j 7 , we

have l = � l 7 c =c 7 e�m = � w l 7 f =c 7 . The correspondence becomes

a similarity and a reflection about x-axis. Careful inspection of
the remaining equations shows that there is only one more point
which could move on a spherical path and for this point we obtain� ��D ,a contradiction.

A similar situation appears if the inversion is degeneratedÒ 7 � D�e�Ò = � D�eiÒ 9 É��D . Taking the resultants of Ò 7 �D�eiÒ = � D with respect to l = and l 7 we obtain Ò 9 �ËD , a
contradiction.

We assume that non of the above mentioned special cases
occur, solve for l^�Aeim-� and substitute the solution into remaining
expressions î = e�î��&e � � e � 9 e � 7 e � I e � � @ Equations î = ��D�e.î��-��D
are homogeneous quadratical in unknowns o 7 e+o = e{o>��e therefore
they express two conic sections in the plane of the homogeneous
coordinates o 7 e{o = e+o � and we are looking for their common
points. Surprisingly, equations î = �LD�e+î � �øD factorize into
four lines, î = �íî =.9 @ î = 7 �øD�e+î � �íî � 9 @ î � 7 e which pass in
general through one point. This statement could not be proved in
general because equations are too complex, but sufficiently gen-
eral examples show that this is really the case. Substitution into
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remaining equation shows that the only possibility for solution
is that the rank of Õ is less than three, a case which was al-
ready discussed. For this reason we have no solution in this case.
A special case appears if the conic sections î = �ÏD�e.î � �ÏD
have one line in common. This happens iff two of the linesî =.9 �úD�e+î = 7 �úD and î � 9 �ËD�e+î � 7 �ËD coincide. Let us
investigate this possibility. We denoteî = �ébzo 7 : � o = :uy8o � jkbSq 7 o 7 :?q = o = :;q � o � j���£bdc 7i7 oª77 :u�c 7 = o 7 o = :u�c 7 � o 7 o � :u�c×��Ao = o � :c = �Aoª7=ª:?c �{� oª7� jî � �£bao 7 : � o = :vy<o � jÁbzÎ 7 o 7 :uÎ = o = :uÎ � o � j��baf 7{7 oª77 :u�&f 7 = o 7 o = :u�&f 7 ��o 7 o>��:��f.��&o = o4�P:vf = ��oª7=-:uf+�{�Óoª7� j (22)

Comparison of coefficients yields the following necessary con-
ditions for the factorization:baf 7i7 c �{� w c 7i7 f �i� j�7�:/�<bdc �{� f 7 � w f �i� c 7 � jkbdc 7{7 f 7 � w f 7{7 c 7 � j4��D @bdc 7{7 f =i= w c =i= f 7{7 :;�<bdc =i= f 7 = w f ={= c 7 = jkbdc 7 = f 7{7 w c 7{7 f 7 = j���D @
Fortunately, these conditions can be expressed explicitly, they
yield two equations for c×� and f+� of third degree. Taking the
resultants of these two equations, we obtain four solutions forcA�&e+f+�&e the given points Ò 9 eiÒ 7 e�Ò = and the fourth solution is
given by Eq.16 as in the singular case. Substitution into the de-
terminant of the matrix Õ shows that it must be equal to zero,
a contradiction. We cannot express c � e{f � in the similarity case,m = �£f = l 7 ì c 7 e{l = �£c = l 7 ì c 7 @ This case must be treated sep-
arately, but with the same result. This finishes the discussion of
all possible cases.

As the result we obtain the following cases of SBB- motions.
(We shall discuss only points in the Ð��éD plane, to each such a
point we have a whole line parallel to Ð -axis of points with a
spherical paths):

Theorem 1 Given three points Ò B in the moving system and
three points in the fixed system ÕvB (centers of spheres on which
the points Ò�B run). Then there are the following possibilities for
additional pairs of points which take part in a Schönflies-Borel-
Bricard motion so that the distance Õ B Ò B is constant:

1. Four points, the fourth point is given byÒ 9 eiÒ 7 e�Ò = e{Õ 9 e{Õt��e{Õ = e centers of spheres are in a
plane.

2. All points of the circumscribed circle of the pointsÒ 9 eiÒ 7 e�Ò = have spherical trajectory, centers are on an el-
lipse.

3. All points of a cubic run on spherical paths, centers lie on
a space curve. The cubic can split into a line and a circle.

4. All points run on spherical paths, centers are in the planeoé�
D @ In all cases points Ò�B and projections of points ÕvB
to Ð¬��D are in an inversion.

Note that this theorem essentially gives all the design infor-
mation which is necessary to design (or avoid) platform mecha-
nisms which are able to perform SBB self motions.

4.4 A general example:

Let us choose c 7 �E��e{l 7 � ´ e{c = ���!e{f = � � �!eil = � � ��e{m = ��&� @ Then we obtainl � � ´ Ù � ��� �8bdc 7� :uf 7� j�:v�&D ´�´ �&c � w � �����f � Ú ì	� e
m � � ´ Ù � � � � bdc×7� :uf.7� j w � ����&c � w �&D ´&´ ��f � Ú ì	� e

where

� � � � � � Ù bdcA�4: � ´ � ���� ��� j�7>:Ebaf+� w � ���A���� ��� j�7ÁÚ @
This yields the expression for the inversion. Further we obtaino = � w o 7 ì �!e�o = �E��o 7 @
For the second possibility we obtain the equation of the cubic in
the formêø�ÿ� � b ´ c�� w ��f+�ÓjÁbdc×7� :vf.7� j�: � ��� ´ c×7� :v�������&f.7� w� � � � c��kf.� w � � ��D�cA� w � �A� ´ �Af+����D @ (23)

Expressions for C 9 e�C 7 are too complicated to be given here, C =
is computed from the remaining equation y 9 �£D @ If we choosecA�-� � � ´ � ì � � �×e+f+�\� � ���×� ì � � �!e we obtain

o>�¨� ´ �&�&�Ao 7 : � ���×�&o =� � � � S �-� ´ �&�&�AF 7 : � ���×�&F =� � � � @ (24)

This yields the previous case with exactly four points with spher-
ical trajectories, points Õ?B are in one plane.

5 Conclusion

I this paper we have tried to give an overview on the results which
have been obtained for self motions and architecture singularity
of Stewart-Gough manipulators. Although the listing of the ref-
erences is as complete as possible, the examples can only be ex-
emplarily. We emphasized to demonstrate the mathematical and
geometrical methods which can be used to derive results in this
field.

That the discussion of all possible cases can be very long
and involved is shown in the new and complete analysis of the
Schönflies-Borel-Bricard platform motions. Although all cases
of SBBM-motions were known already to Borel, a prove of com-
pleteness was missing until now. A kinematic and geometric dis-
cussion of all these cases is open.

An open problem is also the discussion of many cases listed
already by Borel (Type 5,7 and 8). All of these cases would lead
to self motions of SGP, but maybe with strange designs of the
mechanisms.
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Abstract: This paper presents the dual quaternion synthesis
methodology for constrained parallel robots. This methodology
uses the dual quaternion form of the kinematics of supporting se-
rial chains as design equations. Given a set of goal positions that
define the desired workspace, we solve these design equations to
determine the dimensions of the constrained parallel robot. The
structure of these dual quaternion design equations allows a sys-
tematic elimination of the joint parameters. This methodology
results in multiple solutions that are combined to form parallel
robots. Here we formulate and solve the design equations for a
2-TPR parallel robot.

1 Introduction

This paper presents a new formulation for the kinematic synthe-
sis of constrained parallel robots. A constrained parallel robot
is one in which each supporting chain imposes a kinematic con-
straint on the workpiece. These systems provide structural sup-
port in certain directions while allowing freedom of movement
in others. Our synthesis methodology uses a set of goal positions
that describe the workspace of the constrained parallel robot. The
dual quaternion kinematic equations of the supporting chains are
evaluated each of these goal positions to obtain the design equa-
tions, which are solved to obtain their physical dimensions.

This synthesis methodology is an extension of the kinematic
synthesis of linkages (McCarthy (2000b)), which is based on
finding the geometric constraints of the serial chain. The advan-
tage of an approached based on the expression of the kinematic
equations is that it can be applied systematically to serial chains
with up to five degrees of freedom and joint axes. Multiple so-
lutions obtained with this method can be combined to create a
parallel robot.

The synthesis of parallel robotic systems has focussed on
optimization strategies that allow the workpiece full mobility.

∗Address all correspondence to this author.

Chedmail (1998) and Gosselin (1998) present optimization tech-
niques for design serial and parallel robotic system, respectively,
that provide desired properties of the workspace. Murray (2000)
presents a similar methodology applied to planar platforms, and
also Merlet (1997) presents an approach for six-degrees of free-
dom platforms that combines the geometric synthesis to enclose
a given workspace and conditions to take into account joint limits
and interferences. This paper focusses on a design methodology
that results in a robotic system that guides a workpiece with less
than full mobility.

2 Literature Review

Spatial linkage synthesis uses the geometric properties of a se-
rial chain to formulate algebraic equations that must be satis-
fied at each of a discrete set of positions in the workspace (Suh
and Radcliffe (1978)). This yields algebraic equations that are
solved to determine the dimensions of the chain. Also see Mc-
Carthy (2000). Examples of this are the synthesis of spatial RR
chains (Tsai and Roth (1973), Perez and McCarthy (2000)), spa-
tial CC chains (Chen and Roth (1969), Huang and Chang (2000))
and SS chains (Innocenti (1994), Liao and McCarthy (1998)).
Larochelle (2000) uses planar quaternion optimization for the ap-
proximate synthesis of planar one degree-of-freedom linkages.

Recently, Mavroidis and Lee (2001) used the kinematics
equations of the spatial RR and RRR robots to formulate their
design equations. This approach introduces the joint parameters
of the chain at each of the goal positions as additional variables
in the design equations, see also Lee and Mavroidis (2002). The
advantage is that it can be systematically applied to a broad range
of robotic systems.

In this paper, we follow Mavroidis’ basic ideas, however, we
use successive screw displacements (Gupta (1986), Tsai (1999))
formulated in terms of dual quaternions to represent the kinemat-
ics equations of the robot. Dual quaternions were introduced to
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linkage analysis by Yang and Freudenstein (1964). They form an
eight dimensional Clifford algebra that contains a subset, known
as unit dual quaternions, which is isomorphic to the group of spa-
tial displacements (McCarthy (1990)). Also see Angeles (1998).

There are two advantages in this formulation. The first is
that successive screw displacements provide a convenient for-
mulation for the kinematics equations in terms of the joint axes
directly. Secondly, it reduces the number of equations obtained
in each goal position from 12 to 8.

3 Supporting Chain Kinematics Equations

The kinematics equations of the robot equate the 4 × 4 homoge-
neous transformation [D] between the end-effector and the base
frame to the sequence of local coordinate transformations along
the chain (Craig (1986)),

[D] =[G][Z(θ1, d1)][X(α12, a12)][Z(θ2, d2)] . . . (1)

. . . [X(αn−1,n, an−1,n)][Z(θn, dn)][H].

The parameters (θ, d) define the movement at each joint and
(α, a) are the length and twist of each link, collectively known
as the Denavit-Hartenberg parameters. The transformation [G]
defines the position of the base of the chain relative to the fixed
frame, and [H] locates the tool relative to the last link frame.

3.1 Successive Screw Displacements

These kinematics equations can be transformed into successive
screw displacements by choosing a reference position [D0]. Let
[Di] be the homogeneous matrix describing the transformation
from the fixed frame to a moving frame Fi. We can compute
[D0i] = [Di][D0]−1, that is,

[D0i] = [Di][D0]
−1 =

([G][Z(θ1i, d1i)] . . . [Z(θni, dni)][H])

([G][Z(θ10, d10)] . . . [Z(θn0, dn0)][H])−1. (2)

This can be viewed as

[D0i] = [T (∆θ1,S1)] . . . [T (∆θn,Sn)], (3)

where

[T (∆θ1, S1)] = [G][Z(θ1i, d1i)][Z(θ10, d10)]
−1[G]−1,

[T (∆θ2, S2)] = ([G][Z(θ10, d10)][X(α12, a12)][Z(θ2i, d2i)])

([G][Z(θ10, d10)][X(α12, a12)][Z(θ20, d20)])
−1,

...

[T (∆θn, Sn)] = ([G][[Z(θ10, d10)] . . . )

[Z(θn, dn)][Z(θn0, dn0)]
−1([G][[Z(θ10, d10)] . . . )

−1. (4)

The displacements [T (∆θi,Si)] are the relative rotations
about and translations along the joint axes Si of the robot from

the chosen reference configuration. Notice that by expressing
them in this way, the initial transformation [G] is absorbed in the
first joint axis and the final transformation [H] disappears from
the expression.

3.2 Dual Quaternion Kinematics Equations

The workspace of the robot can also be expressed by using the
Clifford algebra of the dual quaternions. A spatial displacement
can be represented as a dual quaternion,

Q̂(θ̂) = sin(
θ̂

2
)S + cos(

θ̂

2
), (5)

where S = s + εs0, with ε2 = 0, is the screw axis of the trans-
formation. The dual numbers cos( θ̂

2 ) = cos θ
2 + ε(−d

2 sin θ
2 ) and

sin( θ̂
2 ) = sin θ

2 + ε(d
2 cos θ

2 ) contain the information about the
rotation about and the displacement along the screw axis. The
components of the dual quaternions can be easily computed from
the homogeneous matrix transformation.

The spatial displacements can be represented as the set of
points Z = (Z,Z0) in R8 which are subject to two constraints:
Z·Z = 1 and Z·Z0 = 0. Then the workspace can be represented
as lying on a six-dimensional submanifold of R8.

The dual quaternion form for the kinematics equations of the
robot are obtained by transforming eq.(3) into

D̂i = Ŝ1(∆θ̂i
1) . . . Ŝn(∆θ̂i

n), (6)

where D̂i is the dual quaternion for [D0i] and Ŝj is the dual
quaternion for [T (∆θj ,Sj)].

This approach yields the kinematics equations as successive
screw transformations from the reference position. It is a useful
formulation from the synthesis point of view because the compo-
nents of each axis appear explicitly in the base frame coordinates.

4 Constrained Parallel Robot Synthesis

The dual quaternion methodology for the synthesis of con-
strained serial chains yields multiple solutions. These solutions
can be combined to form a parallel robot. It is also possible to
design a different seral chain for the same set of goal positions
and add this to the parallel robot. The operation of assembling
the end-effectors of several serial chains ensures that the paral-
lel robot will reach each of the goal positions of the supporting
serial chains.

It is useful to note that the constraints on the workpiece of
the combined system may not allow smooth movement through
all of the goal positions. This is a performance issue that re-
quires additional analysis. Other performance concerns are to
accommodate joint limits as well as the potential for interference
between links. Other performance factors can be included in the
design process, such as dexterity, mechanical advantage, forces
at the joints, the effect of tolerances, and positioning errors.
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In this paper, we focus on the geometric problem of ensuring
that the constraints imposed by each supporting chain are satis-
fied at each of the desired goal positions of the workpiece.

4.1 Design Equations for Supporting Serial Chains

Let [T (θ1, . . . , θk)] be the kinematics equations of a serial robot,
and let a discrete approximation of the desired workspace be
given in the form of n goal transformations [Di], i = 0, . . . , n−
1. The synthesis problem consists of solving the n matrix equa-
tions

[T (θ1,i, . . . , θk,i)] = [Di], ı = 0, . . . , n − 1. (7)

We now transform these equations to successive screw dis-
placements in dual quaternion form. Equating the n − 1 goal
positions D̂i, i = 1, . . . , n − 1 to the kinematics equations
Q̂(θ̂1, . . . , θ̂k), we obtain the n − 1 equations

Q̂i(θ̂i
1, . . . , θ̂i

k) = D̂i, i = 1, . . . , n − 1 (8)

For each of the n− 1 positions we define eight component equa-
tions. However, due to the structure of the dual quaternions, only
six of them are independent. For a unit dual quaternion, the 2-
norm of the first vector is equal to one and the dot product of the
first times the second vectors is equal to zero.

Assume for the moment that the robot chain can be repre-
sented by an equivalent series of j revolute joints. Each of these
joints has an axis which is defined by six Plucker coordinates,
which yields 6j unknowns. The j joint variables take different
values at each of the n − 1 positions, which add j(n − 1) un-
knowns. This yields 6j + j(n − 1) unknowns.

Two constraint equations are associated with Plucker coordi-
nates arise for each joint axis. For each of the n−1 goal positions
we obtain eight equations, which can be reduced to six. Thus, we
have 2j + 6(n − 1) equations.

Equating the number of unknowns to the number equations,
we obtain

6j + j(n − 1) = 6(n − 1) + 2j. (9)

Solving for n

n =
3j + 6
6 − j

, (10)

we have that 2R, 3R, 4R and 5R spatial chains require 3, 5, 9,
21 positions, respectively. However, we need to consider some
limitations. In eq. (9) we equate dual quaternions component
by component. As the rotations operate independently in spatial
displacements, the number of spherical positions we can reach
will be limited by this fact, while the number of spatial transla-
tions is computed in general. Hence, to compute complete spa-
tial positions, first we need to check how these are limited by the
maximum number of spherical positions we can reach. To sep-
arate rotations from translations, assume our robot consists of l
rotational joints and k translational joints. We therefore need two

equations; the first one equating rotational joint directions with
rotation components of the dual quaternion,

3l + l(nR − 1) = 3(nR − 1) + l (11)

and the second equating both rotational and translational
joints to the whole quaternion,

6(l + k) + (l + k)(n − 1) = 6(n − 1) + 2l + k. (12)

From the rotation equation,

nR =
3 + l

3 − l
. (13)

Notice that this coincides with the results for spherical
robots: for one revolute joint we obtain finite number of solu-
tions for two positions, this means we can reach one relative ro-
tation. For two revolute joints we have finite number of solutions
for nR = 5, while for three we get infinity, which means that we
can reach any orientation. The formula stops making sense after
this. The maximum number of complete positions we can reach
will be restricted by nR, and if in the second formula we obtain
more than that, the rest will be just translational components of
dual quaternions in which rotations will have to be bounded to
the given workspace.

Notice also that here we assume that the axes of the rota-
tional and translational joints are not related, but it is easy to
adapt the formula to particular cases in which the joints are con-
strained.

4.2 Solving the Design Equations

The design equations for constrained robots contain joint vari-
ables and the kinematic parameters defining the joint axes. Our
goal is to eliminate the joint variables, if possible, and solve for
the parameters of the axes, which define the physical dimensions
of the robot.

In order to eliminate the joint parameters, we consider the
equations for each position independently. We call this process
“implicitization” of the parametric equations, see Cox (1998).
The first step in this implicitization process uses the semi-direct
product structure of the group of spatial displacements captured
by the algebra of dual quaternions, which separates the compo-
sition of rotations in the real part from a combination of transla-
tions and rotations in the dual part. In the dual quaternion prod-
uct the first four components are never mixed with the last four
in any computation.

The four rotational components of the dual quaternion equa-
tion are parameterized only by the revolute joint variables,

Q̂rot(θ1, . . . , θk) =




qx(θ1, . . . , θk)
qy(θ1, . . . , θk)
qz(θ1, . . . , θk)
qw(θ1, . . . , θk)




=




px

py

pz

pw




(14)
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This can always be transformed to a linear system that al-
lows to solve for two of the revolute joint variables as a function
of the joint axes and the rest of revolute variables,

[R(θ3, . . . , θk)]




cos θ1
2 sin θ2

2

sin θ1
2 cos θ2

2

sin θ1
2 sin θ2

2

cos θ1
2 cos θ2

2




=




px

py

pz

pw




(15)

where the matrix [R(θ3, . . . , θk)] is invertible for non-
degenerated cases. Degenerated cases are those in which the axes
of the variables we are solving for are parallel, for instance solu-
tions in which the serial chain is not spatial but planar. We can
assume the matrix is compatible when the axes are a solution for
the design problem. Also notice that the matrix in Eq. (15) is
orthogonal for the cases in which the axes of the variables that
we are solving for are perpendicular.

This allows us to eliminate linearly two of the rotational pa-
rameters in the form of a vector of sine and cosines. We can then
substitute these expressions in the second four components of the
dual quaternion,

Q̂trans(θ3, . . . , θk, d1, . . . , dl) =

=




q0
x(θ3, . . . , θk, d1, . . . , dl)

q0
y(θ3, . . . , θk, d1, . . . , dl)

q0
z(θ3, . . . , θk, d1, . . . , dl)

q0
w(θ3, . . . , θk, d1, . . . , dl)




=




p0
x

p0
y

p0
z

p0
w




. (16)

As a general rule, we can eliminate the last equation in
Eq.(16), as we can see that in equating a robot Q̂ to a goal dual
quaternion P̂ , the equation q0

w = p0
w does not add anything to

the set of solutions,

(q0
x − p0

x)px + (q0
y − p0

y)py + (q0
z − p0

z)pz + (q0
w − p0

w)pw −
(px − qx)q0

x − (py − qy)q0
y − (pz − qz)q0

z −
(pw − qw)q0

w + (q0
xqx + q0

yqy + q0
zqz + q0

wqw) = 0. (17)

To this set of equations we need to add any condition on the
additional joint variables that is implicit in the solution for the
rotations. The subsequent joint variables can be eliminated se-
quentially in a similar fashion, but the procedure is different from
case to case. The parameters corresponding to revolute joints ap-
pear as quadratic sine and cosine functions, while the parameters
corresponding to prismatic joints appear linearly.

To the final set of equations free of joint variables we need
to add the Plucker conditions for each joint axis Si = si +εs0

i ; in
fact, these equations are the ones that allow us to disregard two
equations for each dual quaternion equality.

si · si = 1, i = 1, . . . , k + l

si · s0
i = 0, i = 1, . . . , k (18)

In the example below the process is illustrated for a TPR
chain.

5 Design of the 2-TPR Constrained Parallel Robot

The 2-TPR robot consists of an end-effector supported by two
TPR serial chains. Each supporting TPR serial chain imposes
two constraints on the end-effector, which means that the result-
ing system has two degrees of freedom.

The TPR serial chain is a four-degree of freedom robot. The
base joint T consists of two revolute joints about perpendicular
axes. This joint is also called U-joint for universal joint. The
fixed axis G1 allows rotation of angle θ1 about it. Located at 90o

and intersecting G1 is the second revolute axis, G2, which allows
rotation of angle θ2. This is followed by a translation d along an
arbitrary direction H and finally a rotation of angle φ about an
arbitrary axis W, see Figure 1.

�

�

�

�

φ

θ1

θ2

Figure 1: The spatial TPR robot

We call c to the intersection point of the two rotation axes G1

and G2. Notice that the location of the prismatic joint is immate-
rial and has been assigned in the drawing to the same intersection
point.

The dual quaternion representation for the relative displace-
ments of the chain is given by

Q̂TPR = Ĝ1(θ1, 0)Ĝ2(θ2, 0)Ĥ(0, d)Ŵ (φ, 0), (19)

When applying the dual quaternion product we obtain the
expression Q̂TPR = Q0 + Q, where the point is

Q0 = c
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s
φ
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)
, (20)
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and the dual vector,
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(21)

The expansion of this equations componentwise leads to a
set of equations in the components of the axes. The T-joint axis
is formulated so that the coordinates of the intersection point c
appear explicitly, as the point is also a design parameter,

G1 = (g1x, g1y, g1z) + ε((cx, cy, cz) × (g1x, g1y, g1z))
G2 = (g2x, g2y, g2z) + ε((cx, cy, cz) × (g2x, g2y, g2z)). (22)

The moving prismatic axis has direction h = (hx, hy, hz)
and arbitrary location that will not appear in the design equations.
The moving rotation axis is expressed in Plucker coordinates,
W = (wx, wy, wz) + ε(w0

x, w0
y, w0

z).
The number of positions needed to obtain finite number of

solutions is calculated as explained in the previous section. As
we have three rotational joints, the robot will be able to reach
any orientation and the orientation does not limit the number of
complete positions to reach. We have 18 + 4(n − 1) unknowns,
corresponding to the direction G1, the point c, the direction G2,
the direction h and the line W, plus the joint variables for the
n− 1 relative transformations. We have 6 + 6(n− 1) equations,
corresponding to the unit vector conditions for all directions, the
perpendicularity condition between G1 and G2 and the moment
condition for W, plus the six independent equations per goal dual
quaternion . Therefore we need to define n = 7 positions.

5.1 The Design Equations

To create the design equations we equate the expanded eqs.(20,
21) to the goal dual quaternion P̂ , that is,

Q̂TPR(θi
1, θ

i
2, d

i, φi) − P̂ i = �0, (23)

to obtain one of the sets of design equations. After equating for
all the relative dual quaternion transformations, we obtain six

sets of dual quaternion equations. However, to eliminate the joint
parameters we work with only a generic set and apply the results
to each relative position.

To eliminate the joint parameters we consider the separation
between rotations and translations. It is easy to solve for two of
the rotational joint parameters as shown in Eq.(15). Every di-
rection will be reached by moving the rotation axes accordingly
to the third rotation parameter as appears in the solution of the
linear system,

[R(φ)]
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2 sin θ2

2

sin θ1
2 cos θ2

2

sin θ1
2 sin θ2

2

cos θ1
2 cos θ2

2




=




px

py

pz

pw




, (24)

with

[R(φ)] =
[
v1 v2 v3 v4

s1 s2 s3 s4

]
. (25)

The column vectors in [R(φ)] are

v1 = cos
φ

2
g2 + sin

φ

2
g2 × w

v2 = cos
φ

2
g1 + sin

φ

2
g1 × w

v3 = cos
φ

2
g1 × g2 + sin

φ

2
((g1 × g2) × w − (g1 · g2)w)

v4 = sin
φ

2
w (26)

and the last row is composed of the scalars

s1 = − sin
φ

2
g2 · w

s2 = − sin
φ

2
g1 · w

s3 = − cos
φ

2
g1 · g2 − sin

φ

2
(g1 × g2) · w

s4 = cos
φ

2
. (27)

The matrix [R(φ)] is an orthogonal matrix when solving for
the joint variables θ1, θ2 corresponding to the T-joint. The solu-
tion for the angles is




cos θ1
2 sin θ2

2

sin θ1
2 cos θ2

2

sin θ1
2 sin θ2

2

cos θ1
2 cos θ2

2




= [R(φ)]T




px

py

pz

pw




(28)

The solution always exists for directions g1, g2 and w and
angles φ such that the system is solvable, which we can assume
will be given by the solution of the design equations. In this case
there is not planar degeneracy if we consider the constraint for
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g1 and g2 to be at right angles. The angle φ is constrained by the
relation among the four variables we are solving for,

cos
θ1

2
sin

θ2

2
· sin θ1

2
cos

θ2

2
= cos

θ1

2
cos

θ2

2
· sin θ1

2
sin

θ2

2
, (29)

obtaining the condition for φ,

A0 cos2
φ

2
+ B0 sin2 φ

2
+ C0 cos

φ

2
sin

φ

2
= 0. (30)

The solutions for the θ1, θ2 angles are substituted in the three
first moment equations of the dual quaternion. We obtain three
equations which are linear in the prismatic joint variable d and
quadratic in the revolute joint variable φ, and that we denote by

(A1id + A0i) cos2
φ

2
+ (B1id + B0i) sin2 φ

2
+

(C1id + C0i) cos
φ

2
sin

φ

2
+ D0i = 0, i = 1, . . . , 3 (31)

To eliminate φ, we add the previously obtained angle condi-
tion, eq. (30), to create the homogeneous system




A11d + A01 B11d + B01 C11d + C01 D01

...
...

...
...

A13d + A03 B13d + B03 C13d + C03 D03

A0 B0 C0 0







cos2 φ
2

sin2 φ
2

cos φ
2 sin φ

2
1




= �0 (32)

For the system to have solutions, the determinant must be
equal to zero. The determinant is a quadratic equation in the
prismatic joint variable d.

We can obtain the subspace of solutions from the matrix cor-
responding to the first three rows. By solving linearly in this sys-
tem for the variables cos2 φ

2 , sin2 φ
2 and cos φ

2 sin φ
2 , we obtain

expressions as a function of the prismatic joint variable d. The
relations between these three solutions,

cos2
φ

2
+ sin2 φ

2
= 1

(cos2
φ

2
)(sin2 φ

2
) = (cos

φ

2
sin

φ

2
)2 (33)

lead to two more equations in d, the first one being a cubic and
the second one a quartic in d. We obtain the system of three
equations

K4id
4 + K3id

3 + K2id
2+K1id + K0i = 0,

i = 1, . . . , 3. (34)

Out of the system of three equations in d,


 0 0 K21 K11 K01

0 K32 K22 K12 K02

K43 K33 K23 K13 K03
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1




=




0
0
0
0
0




(35)

we can eliminate the parameter d, for instance by direct substitu-
tion of the solution of d from the quadratic equation in the other
two. We obtain two design equations per goal dual quaternion,
which are free of joint variables and depend only on the coor-
dinates of the joint axes. These 12 equations together with 6
constraints,

g2
1x + g2

1y + g2
1z = 1,

g2
2x + g2

2y + g2
2z = 1, g1xg2x + g1yg2y + g1zg2z = 0

w2
x + w2

y + w2
z = 1, wxw0

x + wyw0
y + wzw

0
z = 0

h2
x + h2

y + h2
z = 1 (36)

allows us to solve for the 18 unknowns corresponding to the four
joint axes.

5.2 Assemble the 2-TPR Constrained Robot

From the design equations for the TPR serial chain, we will ob-
tain a certain number of solutions. The exact number of complex
solutions can be known if we are able to reduce the polynomial
system of design equations to a triangular system with one poly-
nomial being univariate. In the case of the serial TPR chain, the
only possibility of creating a parallel robot is to form a 2-TPR
robot by joining the end-link of two of the solutions. The 2-TPR
robot has two degrees of freedom, and notice that the 3-TPR plat-
form is a structure. The 2-TPR robot will reach the set of seven
positions, but nothing ensures that the movement of the robot
will be smooth or even possible. The simplest strategy to choose
a good design is to create all possible combinations of two solu-
tions and to analyze their movement through the goal positions.

6 Numerical Example

We present an example for the design of the 2-TPR parallel robot.
To pick up to seven positions in space, we can either generate
them individually or perform dual quaternion interpolation be-
tween an initial position, an intermediate position and a final po-
sition McCarthy and Ahlers (1999). Each TPR serial robot will
exactly hit the seven positions in the trajectory. Another option is
to set some of the parameters of the TPR chain to desired values
and solve for a smaller number of positions.

In our example we solve for the seven positions for the first
TPR serial chain, and for the second chain we set both the direc-
tions of the rotations of the T-joint g1 and g2 to a specified value,
which is equivalent to fix the plane of the rotation, and we also
impose the condition that the moving revolute joint axis W must
be perpendicular to the prismatic joint direction h. Using the
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Figure 2: The seven initial positions

Table 1: THE GOAL POSITIONS

Pos. Axis Rot. Trans.
1 (1.0, 0.0, 0.0), (0.0, 0.0, 0.0) 0o 0
2 (0.5, 0.8,−0.4), (−1.8, 0.8,−0.7) 68.9o 0.32
3 (−0.2, 0.9,−0.3), (−1.7,−0.3, 0.2) 92.7o 0.71
4 (0.0, 0.8,−0.5), (−2.2, 0.0, 0.2) 156.5o 1.39
5 (0.3, 0.9,−0.3), (−1.6, 0.5,−0.1) 79.0o 0.31

counting formula, we see that we can solve for a finite number
of solutions for n = 5 positions.

On Table 1 and Figure 2 we define and show the specified
positions.

We solve numerically the design equations using a Newton-
Raphson type of solver. The design equations are very sensitive
to the initial conditions, and in this particular case we could not
find any good solution for the second chain, and the numerical
solver led to a local minimum that hits four of the five positions.
In Table(2, 3) we can see the obtained solutions. Figure 3 shows
the parallel 2-TPR robot while reaching positions 1, 2 and 5.

7 Conclusions

This paper introduces a new formulation for the kinematic syn-
thesis of constrained parallel robots. While arbitrary serial chains
can have up to six degrees of freedom, our focus is on chains with
five or less degrees of freedom. These serial chains impose con-
straints on the workpiece of the parallel robot. These constraints
can be used to provide structural support and enhance mechani-
cal advantage.

The dual quaternion form of the kinematics equations of the
supporting serial chain are evaluated at a set of goal positions
to form design equations. These equations include both axis pa-

Table 2: THE JOINT AXES FOR FIRST TPR CHAIN

Joint Axis Direction Moment
G1 (0.52, 0.34,−0.78) (−1.39, 1.06,−0.47)
G2 (−0.41, 0.90, 0.11) (−0.72,−0.48, 1.20)
H (0.81, 0.46, 0.35) (0.02, 0.54,−0.77)
W (0.48, 0.86,−0.19) (−1.83, 0.69,−1.49)

Table 3: THE JOINT AXES FOR SECOND TPR CHAIN

Joint Axis Direction Moment
G1 (1.0, 0.0, 0.0) (0.0, 0.98,−2.15)
G2 (0.0, 1.0, 0.0) (−0.98, 0.0, 1.0)
H (−0.68,−0.33, 0.66) (1.74,−1.33, 1.12)
W (0.49,−0.87, 0.08) (1.29, 0.58,−1.75)

rameters that define the robot and joint parameters that define its
configuration in a goal position. The structure of these equations
provide a convenient strategy for the elimination of the joint pa-
rameters, which we demonstrate for the TPR serial chain. The
parallel 2-TPR constrained robot is constructed by joining the
end-links of two TPR solutions.

Our goal is to expand this approach to a systematic design
procedure for a wide range of constrained parallel robotic sys-
tems. So far, we have results for the RR, RP, RPR, RRR, CC,
and TS serial chains. In addition, we look forward to formulat-
ing the design equations for the TPT serial chain. The main chal-
lenge is the increasing complexity of the joint parameters in the
design equations. We also look forward to incorporating perfor-
mance measures such as speed ratios and mechanical advantage
in order to rate resulting designs.
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Figure 3: The 2-TPR robot reaching positions 1, 2 and 5
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Abstract: As shown in this paper, when designing parallel ma-
nipulators for tasks involving less than six degrees of freedom,
the topology can be laid out by resorting to qualitative reasoning.
More specifically, the paper focuses on cases whereby the manip-
ulation tasks pertain to displacements with the algebraic struc-
ture of a group. Besides the well-known planar and spherical dis-
placements, this is the case of displacements involving: rotation
about a given axis and translation in the direction of the same
axis (cylindrical subgroup); translation in two and three dimen-
sions (two- and three-dimensional translation subgroups); three
independent translations and rotation about an axis of fixed di-
rection, what is known as the Schönflies subgroup; and similar
to the Schönflies subgroup, but with the rotation and the transla-
tion about the axis of rotation replaced by a screw displacement.
For completeness, the fundamental concepts of motion represen-
tation and groups of displacements, as pertaining to rigid bod-
ies, are first recalled. Finally, the concept of -joint, introduced
elsewhere, is generalized to two and three degrees of freedom,
thereby ending up with the - and the -joints, respectively.

li ai son 1: a binding or thickening agent used in cooking
2a) a close bond or connection : INTERRELATIONSHIP

b): an illicit sexual relationship : AFFAIR

Merriam Webster’s Collegiate Dictionary, Tenth Edition
(C)1997,

1996 Zane Publishing, Inc.

Qui pourrait ne pas frémir en songeant aux malheurs
que peut causer une seule liaison dangereuse!

Lettre CLXXV. Madame DE VOLANGES

à Madame DE ROSEMONDE (de Laclos, 1782)

1 Introduction

As robot designers realized the immense possibilities offered by
parallel manipulators, the variety of designs has not ceased to
grow. It would not be exaggerated to say that we are living an
era of robot design comparable to the Cambrian period of natu-
ral history. Indeed, the number of novel designs either published
in conference proceedings and archival journals or disclosed in
patent filesis too rich to be recorded exhaustively. We thus not
aim here at a comprehensive account of all work currently known,
but rather a representative sample of this work. The motiva-
tion behind the intense work in parallel manipulator design is
equally rich, mostly pertaining to applications areas such as: a)
machine-tool design, whereby parallel manipulators are termed
Parallel-Kinematics Machines (PKM); b) robot-assisted surgery;
c) surveillance; d) telescope design; and e) motion simulation. In
virtually all these areas it has been realized that a full six-degree-
of-freedom capability is not necessary; in some tances, all six de-
grees of freedom are sometimes even undesirable. This is the
case, for example, in the assembly of electronic boards, with an
essentially planar geometry, whereby any rotation about an axis
lying in the plane of the board is to be prevented; else, the assem-
bly will not be successful and the board can be even damaged.

Work on parallel robot design outside six-degree-of-freedom
(six-dof) systems can be traced back to Hunt (1983). Later work
focused mostly on planar and spherical manipulators (Gosselin
and Angeles, 1987; Craver, 1989). An architecture that received
special attention involves three legs of the revolute-prismatic-
spherical type, producing two rotations and one translation of its
moving platform (Lee and Shah, 1987; Lee and Arjuman, 1991;
Agrawal, 1991; Pfreundschuh, Kumar and Sugar, 1991).

Of special interest is the design of three- and four-dof manip-
ulators for the production of either pure translations or displace-
ments of the Schönflies type, respectively. The latter consist of
three independent translations and one rotation about an axis of
fixeddirection. A firstmanipulator of the pure-translation type
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was disclosed in (Clavel 1990). Although the foregoing patent
file claims a possible rotation about an axis of fixed direction,
for the production of Schönflies displacements, this rotation is
achieved by means of a motor mounted on top of the moving plat-
form, and hence, the device is not a Schönflies-motion generator,
properly speaking. Brogårdh (2001) discloses a parallel array that
is capable of three-dof translations and can produce Schönflies
motions by the addition of one motor at its end plate, similar
to Clavel’s. Other instances of three-dof translational manipu-
lators are those proposed in (Hervé and Sparacino, 1992; Arai,
Hervé and Tanikawa, 1996). A fully-parallel Schönflies-motion
generator was disclosed fairly recently in (Company, Pierrot,
Shibukawa and Koji, 2001).

2 Kinematics Background

The concepts, and to a great extent the notation and nomenclature
that follow, are taken from (Hervé, 1978).

The kinematics of machines is studied via their underlying
kinematic chains. A kinematic chain is the result of the coupling
of rigid bodies, called links. Upon coupling two links, a kine-
matic pair is obtained. When the coupling takes place in such a
way that the two links share a common surface, a lower kinematic
pair results; when the coupling takes place along a common line
or a common point of the two links, a higher kinematic pair is
obtained.

Lower kinematic pairs deserve special attention for various
reasons: One is that they model fairly well the mechanical cou-
plings in a variety of machines; one more is that they are known
to occur in exactly six types, to be described presently. Higher
kinematic pairs occur in the coupling by cam-follower mecha-
nisms and by gears, in which contact occurs along common lines
or common points of the coupled bodies.

We shall denote with lower-case boldfaces all vectors; with
upper-case boldfaces all matrices. Sets will be denoted with cali-
graphic fonts, e.g., , , etc., while lower kinematic pairs are de-
noted with sans-serif upper cases: R, P, H, C, E, and S denote
the six pairs of interest (Denrit and Hartenberg, 1964), which are
recalled below:

( ) The revolute pair R allows a relative rotation through an an-
gle about one axis passing through a point of position
vector a and parallel to the unit vector e;

( ) The prismatic pair P allows a relative translation in the
direction of a unit vector e;

( ) The screw pair H allows both a relative rotation through an
angle about an axis passing through a point of posi-
tion vector a and parallel to the unit vector e, and a relative
translation in the direction of e. However, the rotation and
the translation are not independent, for they are related by
the pitch of the pair: ;

( ) The cylindrical pair C allows both a relative rotation
through an angle about an axis passing through a point

of position vector a and parallel to the unit vector e, and
a relative translation in the direction of e, with rotation and
translation being independent;

( ) The planar pair E allows two independent translations
and in the directions of the distinct unit vectors u and v, re-
spectively, and a rotation about an axis normal to the plane
of these two vectors; and

( ) The spherical pair S, allowing one independent rotation
about each of three noncoplanar axes concurrent at a point

. The relative motions allowed by S are thus character-
ized by point , and are associated with an axis parallel to
the unit vector e and with the angle of rotation about this
axis, as per Euler’s Theorem (Angeles, 1982).

Remark: While the R, H and C pairs are characterized by an
axis, the P pair is characterized by a direction alone; not by an
axis!

3 Groups of Displacements

In the sequel, we shall resort to the algebraic concept of group. A
group is a set of elements related by a binary operation with
four properties:

(a) if and , then ;

(b) if , , and , then ;

(c) contains an element called the identity of under , such
that ; and

(d) for every , there exists an element , called the in-
verse of under such that .

If the elements of a set are the displacements undergone by
a rigid body, then we can definea binary operation —read “o-
dot”—of displacements as the composition of displacements: As
the body undergoes firsta displacement and then a displace-
ment , taking the body, successively, from pose to pose ,
and then to pose , it is intuitively apparent that the composition
of the two displacements, , is in turn a rigid-body displace-
ment. Hence,

(a) ;

(b) given and as introduced above, we definea third dis-
placement carrying from pose to pose . Then,

;

(c) under no motion, any pose of a rigid body is preserved, the
motion undergone by the body then being represented by a
displacement that can be definedas the identity element of

, such that, for any displacement , ; and

(d) for any displacement carrying the body from pose
to pose , the inverse displacement is definedas that
bringing back the body from to , and hence,

.
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From the foregoing discussion it is apparent that the set
of rigid-body displacements has the algebraic structure of a
group. Henceforth, we refer to the set of displacements of a rigid
body as group . The interest in studying rigid-body displace-
ments as algebraic groups lies in that, on the one hand, in-
cludes interesting and practical subgroups that findrelevant ap-
plications in the design of production-automation and prosthetic
devices. On the other hand, the same subgroups can be combined
to produce novel mechanical layouts that would be insurmount-
ably difficultto produce by sheer intuition. The combination of
subgroups, in general, can take place via the standard set opera-
tions of union and intersection. As we shall see, however, the set
definedas that comprising the elements of two displacement sub-
groups is not necessarily a subgroup, and hence, one cannot speak
of the union of displacement subgroups. On the contrary, the in-
tersection of two displacement subgroups is always a subgroup
itself, and hence, the intersection of displacement subgroups is a
valid group operation.

Rather than the union of groups, what we have is the product
of groups (Macdonald, 1968). Let and be two groups de-
finedover the same binary operation ; if and ,
then the product of these two groups, represented by , is the
set of elements of the form , where the order is important,
for commutativity is not to be taken for granted in group theory.
That is, in general, .

The intersection of the two foregoing groups, represented by
the usual set-theoretic symbol , i.e., , is the group of
elements belonging to both and , and hence, the order is
not important. Thus, .

3.1 Displacement Subgroups

A subgroup of a given group is a set with two properties: (a)
its elements belong to , although some elements of may not
belong to , and (b) has the algebraic structure of a group.
Therefore, a subgroup of the group of rigid-body displace-
ments is itself a group of displacements, but may lack some
rigid-body displacements.

The six lower kinematic pairs can be regarded as generators
of displacement subgroups. We thus have:

( ) The revolute pair R of axis generates the subgroup
of rotations about . Each element of this group is charac-
terized by the angle of the corresponding rotation;

( ) the prismatic pair in the direction e generates the subgroup
of translations along e. Each element of is char-

acterized by the translation along e;

( ) the screw pair of axis and pitch generates the subgroup
of rotations about and translations along the

direction of the same axis, translations and rotations being
related by the pitch in the form , as described when
the screw pair was introduced. Each element of can
thus be characterized either by or by ;

( ) the cylindrical pair of axis generates the subgroup of
independent rotations about and translations along . Each
element of is thus characterized by both the displace-
ment and the rotation ;

( ) the planar pair generates the subgroup of two inde-
pendent translations in the directions of the distinct unit vec-
tors u and v, and one rotation about an axis normal to both
u and v. Each element of is thus characterized by
the two translations , and the rotation ;

( ) the spherical pair generates the subgroup of rotations
about point . Each element of is characterized by
the axis of rotation passing through in the direction of a
unit vector e and through an angle . Alternatively, each
element can be characterized by the independent rotations
about three designated axes, e.g., the well-known Euler an-
gles.

Besides the six foregoing subgroups, we can definesix more,
namely,

( ) The identity subgroup , whose single element is the iden-
tity displacement introduced above;

( ) the planar-translation subgroup of translations in
the directions of the two distinct unit vectors u and v. Each
element of this group is thus characterized by two transla-
tions, and ;

( ) the translation subgroup of translations in , each ele-
ment of which is characterized by three independent trans-
lations , , and ;

( ) the subgroup of motions allowed by a screw of pitch
and axis parallel to e undergoing arbitrary translations in a

direction normal to e. Each element of this subgroup is thus
characterized by the two independent translations , of
the axis, and either the rotation about this axis or the trans-
lation along the axis. Faute-de mieux, we shall call this
subgroup the translating-screw group;

( ) the subgroup , resulting of the prod-
uct of the planar subgroup of plane normal to e and the pris-
matic subgroup of direction e. Each element of this sub-
group is thus characterized by the two translations , and
the angle of the planar subgroup plus the translation
in the direction of e. Moreover, note that

. This subgroup is known as the Schönflies sub-
group, and is generated most commonly by what is known as
SCARA systems, for Selective-Compliance Assembly Robot
Arm;

( ) the group itself. Each element of this subgroup is charac-
terized by three independent translations and three indepen-
dent rotations.
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It is thus apparent that each subgroup includes a set of dis-
placements with a specificdegree of freedom. We shall need be-
low an extension of the concept of dof, for which reason we term
the dof of each subgroup its dimension, and denote the dimension
of any subgroup by . Thus,

(1a)

(1b)

(1c)

(1d)

(1e)

(1f)

The foregoing list of displacement subgroups is exhaustive.
The reader may wonder whether displacement products are miss-
ing from the list that might be subgroups. However, any displace-
ment product not appearing in the list is not a subgroup, e.g.,

(a) , with definedas a line normal to the unit
vector e and passing through a point , is not a subgroup.
This set of displacements is characterized by a translation
in the direction of e and a rotation about through an angle
, as depicted in Fig. 1. It should be apparent from this figure

that this set of displacements does not form a group.

(b) is not a subgroup, unless and coincide.
The reason here is that, assuming for example, that these two
axes intersect at a point , the composition is,
in general, equivalent to a new rotation, according to Euler’s
Theorem, about a third axis , different from any of the
firsttwo axes, although still passing through .

Figure 1: An instance of the set of displacements
not constituting a group

4 Kinematic Bonds

Displacement subgroups can be combined to produce new sets of
displacements that may or may not be displacement subgroups

themselves. To combine subgroups, we resort to the group op-
erations of product ( ) and intersection ( ).

Now we recall the concept of kinematic bond, which is a gen-
eralization of kinematic pair, as firstproposed by Hervé (1978),
who called this concept liaison cinématique in French. This con-
cept has been termed kinematic liaison (Angeles, 1982) or me-
chanical connection (Hervé, 1997) in English. Since “liaison”
in English is usually applied to human relations, the term “bond”
seems more appropriate, and hence, is adopted here.

We illustrate the concept with an example: Let us assume
three links, numbered from 1 to 3, and coupled by two kinematic
pairs generating the two subgroups and , where these two
subgroups are instanced by specificdisplacement subgroups be-
low. We then have

(2a)

(2b)

(2c)

(2d)

(2e)

(2f)

All of the above examples, except for the third one, amount
to a displacement subgroup. This is why no subgroup symbol is
attached to that set. Instead, we have used the symbol to
denote the kinematic bond between the firstand third links of the
chain. In general, a kinematic bond between links and of a
kinematic chain, when no ambiguity is possible, is denoted by

. When the chain connecting these two links is not unique,
such as in a closed chain, where these two links can be regarded as
being connected by two possible paths, a subscript will be used,
e.g., , , etc. A kinematic bond is, thus, a set of
displacements, as stemming from a product of displacement sub-
groups, although the bond itself need not be a subgroup. Obvi-
ously, the 12 subgroups described above are themselves special
cases of kinematic bonds.

The kinematic bond between links and can be concep-
tualized as the product of the various subgroups associated with
the kinematic pairs between the th and the th links. To keep
the discussion general enough, we shall denote the subgroup
associated with the kinematic pair coupling links and as

, with a similar notation for all other kinematic-pair
subgroups, i.e.,

(3)

Thus, in a six-axis serial manipulator, we can set ,
, all six kinematic pairs in-between being revolutes of skew axes

, , , . Then,
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That is, the R manipulator is a generator of the general six-
dimensional group of rigid-body displacements .

As an example of group-intersection, let us consider the Sar-
rus mechanism, which is depicted in Fig. 2.

Figure 2: The Sarrus mechanism

In the Sarrus mechanism, we have six links, coupled by six
revolute pairs. Moreover, the revolute pairs occur in two triplets,
each on one leg of the mechanism. The axes of the three revolute
pairs of each leg are parallel to each other. The bond , ap-
parently, is not unique, for it can be definedby traversing any of
the two legs. Let the leg of links 1, 2, 3 and 4, coupled by revo-
lutes of axes parallel to the unit vector u, be labelled ; the other
leg, of links 4, 5, 6 and 1, coupled by revolutes of axes parallel to
the unit vector v, is labelled . It is apparent that, upon traversing
leg , we obtain

while, upon traversing leg ,

That is, leg is a generator of the planar subgroup of plane nor-
mal to vector u, while leg is that of the subgroup of plane
normal to vector v. Therefore, is the set
of displacements common to the two -subgroups, namely, the
prismatic subgroup of translations in the direction ,
i.e.,

The Sarrus mechanism is thus a revolute realization of the pris-
matic joint.

5 The Joint and Its Generalizations

The foregoing concepts are now applied to the qualitative synthe-
sis of parallel robotic architectures. By qualitative we mean the

determination of the topology of the kinematic chain, not includ-
ing the corresponding dimensions. These dimensions are found at
a later stage, by means of methods of quantitative synthesis. The
full determination of the kinematic chain, including dimensions,
yields what is known as the architecture of the robotic system at
hand. Prior to the discussion of interest, we recall the joint, first
introduced by Hervé and Sparacino (1992).

5.1 The Joint

A four-bar linkage with its opposite links of the same length is
known as a parallelogram. In the standard terminology, and re-
ferring to Fig. 3, the linkage is composed of: a) one fixedlink, la-
belled 1; b) one input link, labelled 2; c) one coupler link, labelled
3; and one output link, labelled 4. In a parallelogram, the oppo-
site links move with a relative pure translation, each point of one
link describing a circular trajectory onto the other link. The link-
age, shown in Fig. 3, thus provides a kinematic pair of the coupler
link 3 with respect to the fixedlink 1, which Hervé and Sparacino
(1992) termed a joint. Notice that the four R joints of the par-
allelogram linkage can be paired so that each of the two pairs is
either (a) fixedto one single coupled link or (b) fixedto differ-
ent coupled links. In the linkage of Fig. 3, the pairs (R , R ) and
(R , R ) are of the first kind. Correspondingly, (R , R ) and (R ,
R ) are of the second kind. Likewise, we distinguish two kinds
of links, namely, the coupled links 1 and 3, and the coupling links
2 and 4.

Figure 3: The joint, a four-bar parallelogram coupling links
and

Moreover, notice that the joint does not belong to any of
the two classes of lower and higher kinematic pairs. Indeed, it
couples two adjacent links by means of an infinity of circular
cylindrical surfaces of the same radius, but with axes at different
locations normal to the plane of the parallelogram linkage. The
joint is thus characterized by the unit vector e normal to the plane
of the parallelogram and the radius of its family of cylindrical
surfaces. Therefore, is nothing but the common length of the
coupling links. In summary, the joint couples two links while
allowing a relative translation along a circular trajectory.

While the joint is neither a lower nor a higher pair, we can

164



associate a kinematic bond to it. When combined with other kine-
matic pairs or other kinematic bonds, the joint can generate
both and Schönflies subgroups, as discussed in Section 6.

Below we introduce some extensions of the joint.

5.2 The R- Joint

Two kinds of joints are possible when a joint is concatenated
with a R joint of axis lying in the plane of the joint. The differ-
ence lies on whether the axis of the new R joint is the common
normal to the axes of two parallelogram joints of the firstkind or
is normal to the plane of these joints, as depicted in Figs. 4a and
b, respectively.

Figure 4: The two kinds of R- joints: (a) new R-axis lying along
the common normal to two parallelogram R axes and (b) new R-
axis normal to the plane of the two parallelogram axes of the first
kind

We shall call the composite joints of Figs. 4a and b R-
and R- , respectively. When two links, 0 and 3, are coupled by
means of a R- or a R- joint, their points generate a family of
tori of main axis .

5.3 The Joint

It is apparent that, if the four joints of the parallelogram linkage
of Fig. 3 are replaced by universal (U) joints, then the plane of
the parallelogram undergoes a rotation about axis of Fig. 4a.
We recall here that a universal joint is the concatenation of two
R joints intersecting at right angles. Moreover, by properly con-
straining the motion of link 3 with respect to link 1, it is possible
to have link 3 still move with respect to link 1 with pure transla-
tion. In this case, the points of link 3 describe spheres of identical
radii equal to the length of the coupling links of the parallelo-
gram.

Apparently, the constraint needed to produce the foregoing
motion can be realized by coupling two identical parallelograms
of parallel planes and sharing the same base link 1 and the same
moving link 3. The result is displayed in Fig. 5.

: universal joint

Figure 5: A joint

The joint thus generates two-dof displacements that can
be represented by the bond . Moreover, these displace-
ments are elements of the subgroup characterized by the unit
vector e normal to the plane of the R joints of the firstkind of the
given parallelograms. However, does not constitute a
subgroup.

5.4 The Joint

We can go one more step and allow the coupled links of a joint
to undergo an additional pure translation in the direction of its
coupling-link axes, as depicted in Fig. 6. In this figure,the four
coupling links of the joint of Fig. 5 have been replaced by P
joints. By means of a suitable constraint, all four P joints can be
made to undergo identical translations. We call this a joint.

: universal joint

Figure 6: A joint
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The joint thus generates the subgroup of three-dof pure
translations. Notice that a simple means of implementing a
joint is by cascading two joints, upon attaching rigidly the
moving link of one with the fixedlink of the second one, as de-
picted in Fig. 7. In this layout, the two joints are coupled by
means of four R joints of parallel axes.

: universal joint

Figure 7: A possible realization of a joint

We illustrate below how the foregoing ideas can be used in
the synthesis of parallel—and serial—manipulators.

6 The Synthesis of Serial and Parallel Robotic Architec-
tures

The first parallel architecture with pairs was proposed by
Clavel (1988), in what he called the Delta Robot. The kinematic
chain of this robot is displayed in Fig. 8. This robot is a genera-
tor of the displacement subgroup. Delta is thus capable of
three-dof translations.

Figure 8: Kinematic chain of the Clavel Delta robot

The kinematic chain of the Delta robot is composed of two
triangular plates, the top ( ) and the bottom ( ) plates. The top
plate supports the three (direct-drive) motors, the bottom plate the
gripper, and hence, constitutes the end-effector (EE) of the robot.
The EE is capable of translating in 3D space with respect to the
upper plate, which is considered fixed. The two plates are cou-
pled by means of three legs, each with a RR R chain.

While Clavel did not cite any group-theoretical reasoning
behind his ingenious design, an analysis in this framework will
readily explain the principle of operation of the Delta robot.

The th leg is a generator of the Schönflies subgroup,
with denoting the unit vector parallel to the axis of the th mo-
tor. That is, the th leg generates a Schönflies subgroup of dis-
placements comprising translations in 3D space and one rotation
about an axis parallel to . The subset of EE displacements is
thus the intersection of the three subgroups , for ,
i.e., the subgroup . Therefore, the EE is capable of pure trans-
lations in 3D space.

Figure 9: The MEL microfinger

One second applications example is the microfinger of
Japan’s Mechanical Engineering Laboratory (MEL) at Tsukuba
(Arai, Hervé and Takinawa, 1996), as displayed in Fig. 9. In the
MEL design, the inventors use a structure consisting of two plates
that translate with respect to each other by means of three legs
coupling the plates. The th leg entails a R R chain, shown in
Fig. 10, that generates the Schönflies subgroup in the direction of
a unit vector , for . The three unit vectors, moreover,
are coplanar and make angles of . The motion of the moving
plate is thus the result of the intersection of these three subgroups,
which is, in turn, the subgroup . Moreover, the kinematic chain
of each leg is made of an elastic material in one single piece, in
order to allow for micrometric displacements.
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Figure 10: The th leg of the MEL microfinger

Yet another example is the Y-Tristar robot, developed at
Ecole Centrale de Paris by Hervé and Sparacino (1992). Inter-
estingly, the above instances of parallel manipulators using R-
joints are capable of generating only the subgroup. However,
they are intended for Schönflies displacements. The inventors of
these architectures have solved the problem of Schönflies-motion
generation by cascading a fourth actuated axis to the parallel ma-
nipulator, thereby obtaining a hybrid parallel-serial one. An ar-
chitecture realizing a Schönflies-motion generator is the linkage
of Fig. 11. The Schönflies displacement subgroup is , with
e parallel to .

Figure 11: kinematic bond generating Schönflies-motions

One more aplication of the same concepts is the serial Schönflies-
motion generator proposed by Angeles, Morozov, and Navarro
(2000). This robot entails a kinematic chain of the R R type,
as displayed in Fig. 12. In fact, the chain is the concatenation of
two pan-tilt generating chains, each constituted by a R- joint,
as displayed in Fig. 4b.

Figure 12: A serial Schönflies-motion generator

To be true, Company, Pierrot, Shibukawa and Koji (2001)
dsiclosed a fully-parallel Schönflies-motion generator in Euro-
pean Patent 1084802. This robot comprises four legs, each be-
ing a Schönflies-displacement generator. Besides this manipula-
tor, no other one is known with the same motion capabilities and
a fully-parallel architecture. Nevertheless, the parallel robot of
EP1084802 does not make proper use of Schönflies-motion gen-
erators. Indeed, this robot is the result of coupling two two-leg
parallel manipulators, each leg being, in turn, the parallel array
of two Schönflies-motion generators identical to those of the legs
of the Delta robot. Such a parrallel array is displayed in Fig. 14,
where it is apparent that two RR R legs generating Schönflies
subgroups and are coupled by means of the end-
effector 42, using the same notation as in the foregoing patent.
Link 42, thus, undergoes the set of motions resulting from the in-
tersection of the two Schönflies subgroups, namely,

Thus, link 42 undergoes pure translations in three-dimen-
sional space. However, the parallel array is supplied with only
two actuators, one per leg, and hence, one translation is left un-
controlled, but this uncontrolled motion is exploited in producing
Schönflies motions, as explained below.

What Company and his co-inventors did in order to produce
the Schönflies subgroup was to couple the end-effectors of two
identical parallel arrays like that displayed in Fig. 13 by means
of revolutes of parallel axes, one normal to the u and v unit vec-
tors, the other normal to the and vectors. Such a coupling is
displayed in Fig. 14. In this coupling, the parallel axes of the rev-
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Figure 13: The coupling of two identical generators

olutes of the end-effector 41 can translate freely in space, while
keeping their parallel orientations. Such a motion is controlled by
the actuators driving each of the two legs. Furthermore, the con-
catenation of one of the two revolutes of 41 with each genera-
tor yields a hybrid parallel-serial generator of the Schönflies sub-
group , where . The coupling of the
two Schönflies-motion generators thus yields a set of displace-
ments lying in the intersection of the two Schönflies subgroups,
i.e.,

That is, the intersection of the two identical Schönflies subgroups
is the same Schönflies subgroup.

Figure 14: A parallel array of two Schönflies-motion generators

7 Conclusions

The use of qualitative reasoning in the synthesis of the topology
of parallel manipulators was highlighted in this paper. The mo-
tivation behind is the design of parallel manipulators with three
and four dof. To this end, the theory of groups, as firstproposed
by Hervé in 1978, was used extensively, and the concepts asso-

ciated with kinematic chains in the same context were discussed.
In this vein, various Schönflies-motion generators were recalled,
and new kinematic bonds producing these were proposed. The
concepts were illustrated with various examples.
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groupes de déplacements,” Mechanism and Machine Theory,
Vol. 13, pp. 437–450.

168
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Abstract: Parallel mechanisms have been attracting more
and more researchers’ attention in the context of industrial
application, especially, the parallel kinematics machine. This
paper presents two novel parallel mechanisms with two and
three degrees of freedom (DoFs) and their potential
applications. The output of the two DoFs parallel mechanism
is two planar translations of a rigid body. The architecture
can be applied to the basic mechanism of a parallel
kinematics machine with gantry structure, part handling, and
mobile base for a spatial mechanism. The moving platform of
the three DoFs parallel mechanism has two translational
degrees of freedom and one rotational degree of freedom
with respect to the base. The distinct advantage of the
mechanism is that the mobility of the rotational DoF is very
high, which means that the mechanism has the application
advantage in the parallel kinematics machine and other
manipulating devices. The results of the paper are very useful
for the potential design conceive of parallel mechanisms and
the applications.

1 Introduction

The conceptual design of parallel mechanisms can be dated
back to 1947, when Gough established the basic principles of
a mechanism with a closed-loop kinematic structure (Gough,
1956), that allows the position and the orientation of a
moving platform so as to test tire wear and tear. Stewart
designed a platform mechanism for use as an aircraft
simulator in 1965 (Stewart, 1965). In 1978, Hunt (1978)
made a systematic study of the kinematic structure of parallel
mechanisms, in which the planar 3-RPS parallel mechanism

is a typically one. Since then, parallel mechanisms have been
studied extensively by numerous researchers.

The most studied parallel mechanisms are with 6 DoFs.
These parallel mechanisms posses the advantages of high
stiffness, low inertia, and large payload capacity. However,
they suffer the problems of relatively small useful workspace
and design difficulties (Merlet, 2000). Furthermore, their
direct kinematics is a very difficult problem, while the
problem of parallel mechanisms with 2 and 3 DoFs can be
described as closed forms (Liu, 2001). As well known, there
are three kinds of singularity in parallel mechanisms
(Gosselin and Angeles, 1990). Moreover, not all singularities
of a 6-DoF parallel mechanism can be found out easily. But
for a parallel mechanism with 2 and 3 DoFs, the singularities
can always be identified readily. For such reasons, parallel
mechanisms with less than 6 DoFs, especially 2 and 3 DoFs,
have increasingly attracted more and more researchers’
attention with respect to industry applications (Tonshoff et al.,
1999; Siciliano, 1999; Tsai and Stamper, 1996; Ceccarelli,
1997; Xin-Jun Liu et al., 2001).

The existing planar 2-DoF parallel mechanisms (Asada
and Kanade, 1983; McCloy, 1990; Gao et al., 1998) are the
well-known five-bar mechanism with prismatic actuators or
revolute actuators. In the case of the mechanism with
revolute actuators, the mechanism consists of five revolute
pairs and the two joints fixed to the base are actuated. In the
case of the mechanism with prismatic actuators, the
mechanism consists of three revolute pairs and two prismatic
joints and the prismatic joints are actuated. The output of the
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mechanism is the translational motion of a point on the end-
effector but not a rigid body. Among the 3 DoFs parallel
mechanisms, some (e.g. the 3-RPS parallel manipulator) have
special kinematics characteristics (Huang and Fang, 1996).
Some of them (e.g. DELTA (Clavel, 1988), Star like (Hervé,
1992) and spherical 3-DoF paralell manipulators (Liu et al.,
2000a)) are with pure translational or orientational degrees of
freedom. Some of them (e.g. planar 3-DoF parallel
manipulator (Gosselin et al., 1996; Liu et al., 2000b)) are
planar parallel manipulators. It is necessary to design a
spatial three degree-of-freedom parallel manipulator
combining spatial translational and orientational degrees of
freedom in the context of industrial applications.

In this paper, two novel parallel mechanisms with two
and three DoFs and their potential applications will be
presented. The two DoFs parallel mechanism departs from
the existing designs in that a parallelogram mechanism is
adopted in each of the two legs. The motion of the platform is
the planar translational motion of a rigid body but not a point.
The architecture can be applied to the basic mechanism of a
parallel kinematics machine with gantry structure, part
handling, and mobile base for a spatial mechanism. The
moving platform of the three DoFs parallel mechanism has
two translational degrees of freedom and one rotational
degree of freedom with respect to the base. The distinct
advantage of the mechanism is that the mobility of the
rotational DoF is very high, which means that the mechanism
has the application advantage in manipulation a tool with
high dexterity. The results of the paper are very useful for the
potential design conceive of parallel mechanisms and the
applications.
  
2 Description of the Mechanisms

2.1  The Two DoFs Parallel Mechanism

The novel 2-DoF parallel mechanism (Liu, 2001) is
shown in Fig.1(a). A schematic of the mechanism is shown in
Fig.1(b), where the base is labeled 1 and the moving platform
is labeled 2. The moving platform is connected to the base by
two identical legs. Each leg consists of a planar four-bar
parallelogram: links 2, 3, 4, and 5 for the first leg; 2, 6, 7, and
8 for the second leg. In each planar four-bar parallelogram,
the joints are all revolute pairs. Links 3 and 8 are actuated by
prismatic actuators, respectively. Motions of the moving
platform are achieved by the combination of movements of
the links 3 and 8 that can be transmitted to the platform by
the system of the two parallelograms. Due to the structure,
one can see that the moving platform or the rigid body 2 has
two pure translational degrees of freedom with respect to the
base because of the planar four-bar parallelograms. What we
should notice is that, to obtain two DoFs of a rigid body in
this system, only one planar four-bar parallelogram is enough,
as the mechanism shown in Fig.2. The reason to use two
planar four-bar parallelograms is to increase the system’s
stiffness and make the system symmetry.

(a)

(b)

Fig.1 A novel planar 2-DOF parallel mechanism

Fig.2 The 2-DOF parallel mechanism with one
parallelogram

2.2 The Three DoFs Parallel Mechanism

2.2.1 Mechanism Structure

The spatial 3 DoFs parallel manipulator (Liu, 2001; Liu et al.,
2001) is shown in Fig.3 (a), which consists of a base plate, a
movable platform, and three legs that connect the
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aforementioned two plates. Each connecting leg has four
degrees of freedom. Two of the three legs have identical
chains, each of which consists of a 2-DoF joint (or two 1-
DoF joints) and two 1-DoF joints. The third one consists of a
planar four-bar parallelogram and three 1-DoF joints. A 1-
DoF joint for each of the legs is the actuated one.

The moving platform is an isosceles triangle. The vertices
of this platform are connected to a fixed-base plate through
three legs (1), (8) and (12). The legs (1) and (12) have
identical chains, each of which consists of a constant link
which is connected to a universal joint (or two revolute joints)
(15) or (13) at the bottom end and a passive revolute joint (3)
or (11) at the other. The revolute joint is then attached to an
active slider (4) or (10), which is mounted on the guideway
(2) or (9). The third leg (8) consists of a constant link, a
planar four-bar parallelogram, which is connected to a
revolute joint (16) at the bottom end and a passive revolute
joint (5) at the other. The revolute joint is attached to an
active slider (6), which is mounted on the guideway (7). The
movement of the moving platform is accomplished by the
slide of three sliders on the guideways.

(a)

(b)

Fig.3 A new spatial 3-DOF parallel manipulator

2.2.2 Mechanism Capability

As described in last Section, the proposed manipulator is a
general manipulation device that must have three degrees of
freedom when the input elements are active. Due to the
arrangement of the links and joints, as shown in Fig.3, two
legs (1) and (12) provide two constraints on the rotation of
the moving platform about the −z axis and the translation
along −x axis. The two revolute joints (5) and (16) for the
third leg (8) have parallel axes as shown in Fig.3 (a). The
third leg can provide two constraints on the rotation of the
moving platform about x  and z  axes. Hence, the
combination of the three legs constrains the rotation of the
moving platform with respect to x  and z  axes and the
translation along −x axis. This leaves the mechanism with
two translational degrees in yzO −  plane and one rotational
degree of freedom about −y axis. Table 1 gives the
description.

Table 1. The constraints and DoFs of the mechanism

Single leg Combination of three
legs

No. Chain type Constraints Constraints Remained
DoFs

1 PzRxUx, y {Tx, ROz}

2 PzRxUx, y {Tx, ROz}

3 PzRyP*yRy {ROx, ROz}

{Tx , ROx ,
ROz}

{Ty , Tz ,

ROy}

where, P-prismatic joint, R-revolute joint, U-universal joint,
P*-parallelogram, T-translation, RO-rotation, in each of which
the suffix is the DoF.

2.3 Application of the Parallelogram in the Mechanical
Design

The first design of parallel mechanism using parallelogram is
the DELTA with three translational and one rotational
degrees of freedom, which is proposed by Professor Clavel at
EPFL in the early 1980’s. A parallelogram allows an output
link to remain at a fixed orientation with respect to an input
link. The use of three such parallelograms restrain completely
the orientation of the mobile platform, which remains only
with three purely translational degrees of freedom. By now,
the DELTA design has attracted great interest not only in
industry but also in university labs (Bonev, 2001). Later, the
design concept of parallelogram was applied to another three
translational degrees of freedom parallel mechanism by Tsai
(1996), which is also the first design to solve the puzzled
problem of UPU chains. Parallelogram has been also used in
the mechanical design of other parallel mechanisms, e.g.,
Star like parallel manipulator  (Hervé, 1992), and CaPaman
(Ceccarelli, 1997).
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In our design, the parallelogram also plays its un-
substitutable role in the mechanisms, respectively. It allows
the moving platform of the two DoFs parallel mechanism to
output two planar translational motions with respect to the
base. And it remains axes of two revolute joints 5 and 16 of
the three DoFs parallel mechanism, as shown in Fig.3(a), to
parallel to each other permanently. For such reason, the
moving platform cannot rotate with respect to the −x axis.
We believe that the parallelogram will play more and more
important role in the design of new parallel mechanisms, and
will lead to some new parallel mechanisms.

3. Applications of the Mechanisms

The parallel kinematics machine (PKM) is a new type of
machine tool which was firstly showed at the 1994
Internatinoal Manufacturing Technology Show in Chicago by
two American machine tool companies, Giddings & Lewis
and Ingersoll. These machine tools, named Hexpod, were
based on the paradigm of the spatial 6-DoF parallel
mechanism. The parallel kinematics machine technology
promises to offer manufacturers a number of advantages
relative to conventional machine tools, such as a higher
stiffness-to-mass ratio, higher speeds, higher accuracy,
reduced installation requirements, mechanical simplicity, and
high flexibility.

The six DoFs Stewart platform is one PKM configuration
that has been used in a number of new machine tool designs
at the beginning of the born of PKMs. For machining
applications, disadvantages of the Stewart platform include a
complex workspace, limited orientation range of motion and
a requirement of six actuators for a five degree-of-freedom
task (milling, drilling, and similar operations). Moreover,
there are some disadvantages with the parallel kinematics
itself, such as the forward kinematics cannot be described in
closed-form, the calibration is difficult, and so on. For these
reasons, many researchers begin to pay their attentions to less
than 6 DoFs PKMs  (Liu, 2001; Liu et al., 2001; Moriwaki,
1999), especially hybrid PKMs  (Tonshoff et al., 1999;
Siciliano, 1999; Tsai, 1997), such as the Tricept HPI (Neos),
Hexam (Toyoda), PA35 (Hitachi Seiki), Georg V (IFW-
University of Hannover). PKMs with hybrid kinematics are
always built as Tripod structures, for which all points within
the workspace are reachable with high dynamics and high
accuracy (Tonshoff et al., 1999) through the used parallel
mechanism. By means of the two-axis wrist joint the end-
effector gets the desired orientation in the workspace. By this
arrangement of the kinematics the dexterity of the system can
be increased compared to fully parallel kinematics (Hexapod
systems). Another advantage to design a machine tool as
hybrid structure based on a 3, or 4-DoFs parallel mechanism,
to the author’s knowledge there is no hybrid machine tool is
based on a 2-DoF parallel mechanism, is that the stiffness can
be improved by increasing redundant constraints.

3.1 Applications of the Two DoFs Parallel Mechanism
As described in Section 2.1, the output of the parallel
mechanism is the planar translational motion of a rigid body
but not a point. It can allow a rigid body to remain its
orientation when the body is moving. Then, the mechanism
has wide applications in the metal cutting, part handling,
mobile bases for a spatial mechanism, etc.

Applying to the field of machine tool, a concept design of
a PKM with hybrid kinematics based on the 2-DoF parallel
mechanism presented in this paper is shown in Fig.4. In this
design, the machine is a 5-axis system with gantry structure,
that is three translations along x , y , and z  axes, and two
rotations about x  and y  axes. The planar 2-DoF parallel
mechanism provides the machine tool with high stiffness and
high speed. Especially, the upper and lower links of each of
the two planar four-bar parallelograms are substituted by two
plates, which can improve the system’s stiffness. By means
of the two-axis wrist joint the end-effector gets the desired
orientation in the workspace, which provides it with high
mobility. Only single DoF joints are used in the machine tool,
which can increase the accuracy. The worktable can move
freely along the −z axis, which endows the machine tool
with the capability of manufacturing long components.

Additionally, in this design, width of each of the four
plates is increasing from the bottom end to the top, which can
also increase the system’s stiffness. As shown in Fig.4, each
leg consists of one four-bar parallelogram. Letting each leg
comprise two or more four-bar parallelogram, i.e., increasing
the system’s redundant constraints, will improve the system’s
stiffness largely, at the same time the accuracy of
manufacture is increased correspondingly. In order to avoid
the interference between the upper plate and the lower plate,
the moving platform is design as trapezoidal profile, as
shown in Fig.4.

Fig.4 The concept design of a hybrid PKM

All in all, the advantages of the hybrid PKM with gantry
structure are: (a) only single DoF joints are used; (b) high
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speed and stiffness; (c) high mobility of the rotational DoF;
(d) being capable of long components manufacturing. The
machine tool will be developed, cooperated with the Second
Machine Tool Factory in Qiqihaer, China, by the end of May
2002. The hybrid PKM can substitute for the traditional five-
axis machine tool with bridging beam structure.

As mentioned above, the parallel mechanism can
manipulate a rigid body in a plane without orientation.
Therefore, if a tool is equipped on the moving platform, the
parallel mechanism can be used as a two-axis horizontal
PKM, which is characterized by high speed and stiffness, as
shown in Fig.5.

Fig.5 A horizontal two-axis device

3.2 Applications of the 3-DoF Parallel Mechanism

As described in Section 2.2, the advantages of the parallel
mechanism are as following: (a) only single DoF joints are
used; (b) combining spatial translational and rotational
degrees of freedom in a spatial 3-DoF parallel manipulator;
(c) high mobility of the rotational DoF (Liu, 2001; Liu et al.,
2001)]. As analyzed in  (Liu, 2001; Liu et al., 2001), the
mobility of such a parallel mechanism can reach its
maximum value °62.135 , and minimum value °78.62 , the
value can be improved if advise the arrangement of the three
legs.

For such reason, the parallel mechanism can be applied
not only as the manipulating device with three DoFs but also
as hybrid machines appending serial wrist and linear joints.
Figure 6 shows an example of a device with four axes, which
can manipulate a tool with high mobility. A horizontal device
based on the parallel mechanism is shown as Fig.7. In these
designs, the rotation DoF about −x axis is achieved by the
parallel mechanism itself, which can reach the mobility

°±45  within the workspace. If additional movement of the
worktable along −z axis is equipped on each of these two
devices, the device will be an ideal five-axis one. From these
devices, we can see that (a) only one-axis wrist joint is serial;
(b) the rotation DoF about −x axis provide by parallel
mechanism is higher, which are different from the existing
tripod and hexapod PKMs.

Fig.6 A hybrid device with four axes

Fig.7 A horizontal hybrid 4-DoF device

4. Conclusions

This paper presents two novel parallel mechanisms and their
potential applications. The moving platform of the new two-
DoF parallel mechanism has two translational DoFs with the
fixed base. The application in the field of PKM can provide
high speed, high stiffness, and high mobility devices, which
can substitute for the traditional five-axis machine tool with
bridging beam structure. The output of the three-DoF parallel
mechanism is two translational DoFs and one rotational DoF.
The application of such mechanism in industrial world leads
to a device manipulating a tool with high stiffness and high
dexterity. The results of the paper are very useful for the
potential design conceive of parallel mechanisms and the
applications.
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Abstract: We present the analysis and design of a new six
degree-of-freedom parallel mechanism, Eclipse-II, which can
be used as a basis for general motion simulators. This
mechanism allows x, y and z-axis translations and a, b and c-
axis rotations. Most significantly, it presents the advantage of
enabling continuous 360-degree spinning of the platform. We
first describe the computational procedures for the forward
and inverse kinematics of the Eclipse-II. Next, the complete
singularity analysis is presented for the two cases of end-
effector and actuator singularities. Two additional actuators
are added to the original mechanism to eliminate both types
of singularities within the workspace. Stiffness and
workspace analysis are also performed and some practical
aspects of the prototype development are introduced.

1 Introduction

Motion simulators are virtual reality systems that assume
the appearance of a real situation by using audio-visual
effects and movements of a motion base. Such devices are
used for many purposes, e.g., flight and driving simulators to
name only a few. The former are used for pilot training by
providing the pilot with motions that reflect the state of the
aircraft while the later reproduce the actual driving
conditions for vehicle design and human factors studies.
Broadly speaking a motion simulator consists of an auditory
system to generate sound, a visual system to display images,
and a motion base system to generate movements as a result

of motion cues.
Most current simulators have adopted the Stewart-Gough

platform shown in Fig. 1, as the motion base (see [1], [2], [3]
and [4] for a survey on parallel mechanisms and list of
references). This platform is a six degree-of-freedom parallel
mechanism that permits both translational and rotational
motions. The platform can only tilt as much as ±20-30
degrees and large motions, as the 360-degree platform
overturn, are impossible. That is, the overturn motion of the
aircraft or the 360-degree spin of the roller coaster cannot be
reproduced by the Stewart platform.

Some other parallel mechanisms that display relatively
large translational or rotational motions are the Delta robot
[5] and the spherical parallel mechanism [6, 7]. Yet, the
kinematic mobility of these mechanisms is not six and they
are used either for positioning or orienting applications.
Closer to the spirit of our design is the redundantly actuated
Eclipse-I mechanism (see [8] and references cited therein),
devised specifically for machining applications. This
mechanism has a large workspace and all closed trajectories
on five faces of a cube can be traced without breaking contact.
Though the spindle can rotate 360 degrees around the fixed
z-axis and tilt concomitantly, the tilting angle of the upper
plate does not exceed 90 degrees with respect to the vertical.
Hence, large overturn motions are impossible and motion
simulation applications restricted.

The objective of the present research is to develop a
mechanism capable of 360-degree tilting motion of the
platform as well as translational motion. Fig. 2 shows the
Eclipse-II mechanism and an example of its rotational motion
capability. Since there are no limits in the rotational motion,
it is possible to design a more realistic and higher fidelity
motion simulator. This study emphasizes some of the
practical aspects encountered when designing parallel
mechanism and raises new and open research issues.

�

Fig. 1. Structure of Stewart-Gough platform
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2

The paper is organized as follows. In Section 2, we
describe the kinematic structure of the Eclipse-II, including
the computational procedures for the forward and inverse
kinematics. The singularity analysis and a method for
eliminating the singularities are presented in Section 3.
Section 4 presents the stiffness analysis while Section 5
describes the workspace analysis and presents a structure for
maximizing the mechanism’s workspace. In Section 6, the
prototype Eclipse-II, which is currently being built at Seoul
National University is depicted. Finally, some concluding
remarks follow in Section 7.

2 Kinematics of the Eclipse-II

This section presents the architecture of the Eclipse II,
followed by procedures describing the inverse and forward

kinematics. As shown in Fig. 3, the Eclipse-II consists of
three PPRS serial sub-chains that move independently on a
fixed circular guide. Here, P, R, and S denote prismatic,
revolute, and spherical joints, respectively. The Eclipse-II has
six degrees-of-freedom and six actuated joints. These joints
are the three A joints (P) along the horizontal circular guide,
the C2 and C3 joints (P) on the vertical columns and another
P joint (C1) on the vertical circular column. All six actuated
joints can be found in Fig. 3, and are indicated by arrows.
The connecting links, CiBi, are attached to the circular and
vertical columns respectively through revolute joints. The
other ends of these links are mounted to the moving platform
via three, points Bi on the figure, ball-and-socket joints.
Mounting one circular column and two linear columns on the
circular guide results in the Eclipse-II having a large
orientation workspace. Thus, the platform can rotate 360
degrees continuously about the y-axis in the moving frame
{M} (center of the moving platform) and the Z-axis in the
fixed frame {F} (center of the fixed horizontal track),
respectively, as shown in Fig. 3. Coordinates and joint
convention of the Eclipse-II are described in Fig. 4. The
kinematic parameters of the mechanism are as follows: the
fixed circular guide radius, ra, the circular column radius, rb,
the radius of the moving platform, r, the length of the

(a) (b)

(c) (d)

Fig. 2. Eclipse-II mechanism and its 360-degree continuous rotational
motions: (a) Rotation angle 0°, (b) Rotation angle 90°, (c) Rotation angle
180°, and (d) Rotation angle 270°.
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Fig. 3. Architecture of the Eclipse-II mechanism
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Fig. 4. Coordinate and joint convention: (a) Top view, (b) Side view A, and (c) Side view B
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connecting CiBi links, Li, and d, the distance between the
spherical joints on the upper platform. The joint values are
referred to as θij, where i stands generally for the column
index and j for the joint level (1 for the fixed circular guide, 2
for the circular and linear columns and 3 for the revolute
joints on the same columns). For instance, θ32 refers to the
prismatic joint on the third linear column.

2.1 Inverse Kinematics

The problem of inverse kinematics is to determine the
values of the actuated joints from the position and orientation
of the moving frame {M} attached to the moving platform.
For the Eclipse-II mechanism, the inverse kinematics can be
solved by successively solving the inverse kinematics of each
sub-chain. The algorithm for solving the inverse kinematics
is as follows:

1. Given the position p
r

and orientation R of the moving

platform in the fixed {F} frame, find the Cartesian position
of the spherical joints:

pbRb i

M

i += (1)

where i

M
b is the vector of the ith spherical joint expressed in

the moving frame coordinate. R , p
r

, and ib
r

are all
expressed in the fixed frame coordinates.

2. The circular prismatic joint values (Ai) are calculated
from the positions of the spherical joints as follows:

),(arctan21 ixiyi bb=θ (2)

where 1iθ is the ith circular prismatic joint value, and ixb and

iyb are the x and y coordinates of ib
r

, respectively.

3. Calculate the revolute joint value, 13θ (see Fig. 4b), on

the vertical circular column:

ψφθ −+°=18013 (3)

where,
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and izb is the z coordinates of ib
r

.

4. Determine the prismatic joint values, 12θ , on the

vertical circular column:
),(arctan 11212 wz aa=θ (4)

where,

φθ coscos 11311 bLa z +=
,

φθ sinsin 11311 bLa w +=

5. Find the linear prismatic joint values, 2iθ (i = 2, 3),

and the position of the revolute joints, 3iθ (i = 2, 3), on the

vertical linear columns:
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32 sin iiizi Lb θθ += (6)

Note that the solution of 3iθ is in the range [0°, 180°].

2.2 Forward Kinematics

The problem of forward kinematics is to determine the
position and orientation of the moving frame given the
actuated joint values. Similar to many other parallel
mechanisms the forward kinematics solution is not unique
and finding a closed form solution is a difficult task. If all of
the actuated and passive joint values are known, the forward
kinematics can be solved from the forward kinematics of
each serial sub-chain. Therefore, the first step in the forward
kinematics solution is to numerically determine the passive
joint values from the actuated joint values by using the
kinematics constraint equations.

The following algorithm solves iteratively the forward
kinematic using the Newton-Raphson procedure:

1. The constraint equation between the active and passive
joint values is generated from the condition that the distances
between the ball-and-socket joints of the moving platform are
constant:
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2. Given the actuated joint values, find the passive joint
ones for which the kinematic constraint equation (7) is
satisfied. Because analytic differentiation of (7) is quite
simple, a numerical approach like the Newton-Raphson
method can be easily applied [9, 10].

3. Determine the position and orientation of the moving
frame from the forward kinematics equations for each sub-
chain, equation (8), for the Cartesian coordinates of the
spherical joints, and (9) and (10), from next section, for the
position and orientation of the upper platform.

3 Singularity Analysis

Singularity refers to the configuration in which the
number of degrees-of-freedom of the mechanism increases or
reduces instantaneously. Since being close to one of the
singularities can limit movement, disable control or break the
mechanism, the singularity analysis is one of the most
significant and critical problems in the design and control of
parallel mechanisms.

Singularities of parallel mechanisms can be generally
classified into two types: end-effector singularities and
actuator singularities [4]. For the Eclipse-II mechanism, these
two types of singularities co-exist in the workspace. In this
section, the singular configuration of the Eclipse-II

mechanism and the method for eliminating singularities are
described.

The kinematic parameters used for singularity analysis
are specified as follows. The radius of the circular guide (ra),
circular column (rb) and moving platform (r) are, respectively,
1000 mm, 1000 mm, and 300 mm. The lengths of the
connecting link in the circular column (L1) and of the
connecting links in the linear column (L2, L3) are,
respectively, 900 mm and 870 mm.

3.1 Actuator Singularity

At an actuator singularity, the mechanism gains one or
more degrees-of-freedom of possible motion, i.e., a self-
motion occurs. Actuator singularity configurations can be
determined from the Jacobian of the constraint equations. In
the case of the Eclipse-II, the Jacobian of the constraint
equation can be found by differentiating the constraint
equation (7):

0=
∂
∂+

∂
∂

p
p

a
a

gg θ
θ

θ
θ

&& (9)

where pg θ∂∂ / is a 3 × 3 matrix.

If the matrix pg θ∂∂ / is not of full rank, the passive joint

values cannot be determined by the given active joint values,
and then the mechanism is in one of the actuator singularity
configurations.

Finding a closed form solution for the determinant roots
(singularities) of the inverse of the Jacobian is a difficult task
even when a specialized symbolic computational tool is
available [12]. Besides this once the roots have been
identified a different and even more challenging task is
establishing what roots are within the workspace of the
mechanism, i.e., joint values are within admissible motion
range and link interferences are avoided. Another possibility
for identifying the singularities of a parallel mechanism lies
in the use of line geometry and screw theory [13], that is
particularly suited for symmetric parallel platforms
connected by six serial structures, in which the number of

�

�

�

�

Fig. 5. Condition number plot of the actuator singularity configuration

(a) (b)

Fig. 6. Examples of the actuator singular configurations: (a) Point A in Fig.
5, (b) Point B in Fig. 5

Fig. 7. Condition number plot of the actuator singularity configuration in
the redundant case
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actuators is equal to the kinematic degree of freedom of the
platform. A different method, usually considered to be the
simplest in the parallel mechanism literature, is to use a brute
force algorithm and employ a numerical method that
computes the condition number of the Jacobian at all points
in the workspace. The condition number of Jacobian is
defined as the ratio of the maximum singular value to the
minimum singular.

Fig. 5 illustrates the condition number of pg θ∂∂ / , while

the platform tilts from 0° to 360°. The x-axis represents the
tilting angle and the y-axis represents the rotation angle γ
about the z-axis of the moving frame. As the condition
number becomes larger, the mechanism moves nearer to an
actuator singular configuration. For example, in the case of

0=γ , actuator singularities occur around tilting angles of

25° and 155°, the dark regions right above the tilting angle
axis in the left side of the figure.

Fig.6 shows two examples (points A and B in Fig. 5) of
actuator singular configurations of the Eclipse-II. In actuator
singular configurations, two major problems exist. First, the
platform cannot sustain its static equilibrium position in the
presence of external force. In this case, the platform seems to
have extra degrees of freedom. Second, the forward
kinematic solutions are divided into two or more directions.
Along the path crossing the actuator singular configuration,

there exist multiple forward kinematic solutions with the
same active joint values. Hence, there is a chance that the
platform moves along an undesired direction.

One method for eliminating the actuator singular
configurations is to redundantly actuate the mechanism by
adding an actuator to one or more of the passive joints. In the
case of Eclipse-II, an additional actuator is added to one
revolute joint on one of the linear columns (thus pg θ∂∂ /

reduces to a 3 × 2 matrix). Choosing one of the linear
columns over the other one would only imply an upside-
down turn of the figure. Comparing Fig. 7 with Fig. 5, it may
be noted that the condition numbers reduced significantly and
the majority of the actuator singular configurations are
eliminated.

3.2 End-Effector Singularities

End-effector singularities are configurations in which the
moving platform of the mechanism loses one or more
degrees-of-freedom of possible motion. In this case the
forward kinematic Jacobian loses rank. For Eclipse-II, the
algorithm for solving the forward Jacobian is as follows:

1. The position of the moving platform cb
r

is the center of
equilateral triangle determined by the three spherical joints.

� �� �

Fig. 8. Condition number plot of the end-effector singularity configuration

(a) (b)
Fig. 9. Examples of the end-effector singular configuration: (a) Point C in
Fig. 8, (b) Point D in Fig. 8.

(a) (b)
Fig. 10. Y-direction motion of the Eclipse-II: (a) 6 d.o.f Eclipse-II and
(b) 6+1 d.o.f Eclipse-II

�

Fig. 11. Condition number plot of the end-effector singularity
configuration of the 6+1 d.o.f Eclipse-II
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2. The rotational matrix representing the orientation of the
moving platform is:

][ zyx RRRR = (11)

where,
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3. In order to obtain the Jacobian matrix, equations (10)

and (11) are differentiated:
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Elements of the Jacobian, J , are as follows:
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3. Equation (12) can be expressed as
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From equations (9) and (13), the relationship between the
active joint velocity vector and the moving platform velocity
vector can be expressed as
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Like the actuator singularities, end-effector singularities
are established from the condition number of the forward
kinematic Jacobian at all points in the workspace.

The results in Fig. 8 are based on this numerical method,
and illustrate the condition number of the forward Jacobian,
while Eclipse-II tilts from 0° to 360°. The x-axis and y-axis in
Fig. 8 represent the tilting angle and translation along Z-axis
in the fixed frame, respectively. The dark regions around 90°

and 270° in the figure represent the singular configurations of
Jf, which in-effect are end-effector singularities.

Fig. 9 shows two examples of the end-effector singular
configurations of the Eclipse-II. The end-effector singular
configurations occur in positions where, with the platform
tilted at 90° or 270°, one of the spherical joints is located on
the Z-axis of the fixed frame. If the platform reaches one of
the end-effector singular configurations of the Eclipse-II,
there exist infinite solutions for the inverse kinematics. With
other words there exist infinite possible sets of active joint
values for one specific end-effector configuration of the
moving platform. Even if it is possible to select only one
solution of the inverse kinematics while the platform tilts
from 0° to 360°, either the joints have infinite velocity or one
linear column and the circular column collide with each other.
As a solution to this problem, it is possible to change the
solution of the inverse kinematics at an end-effector singular
configuration while avoiding columns or roads collisions.

However, there still remains a problem, as shown in Fig.
10(a). At this configuration, the platform cannot translate
along the y-direction in the moving frame Therefore, an
actuator is added to change the position of the spherical joint
that is connected to the circular column; that is, one degree-
of-freedom is added to the original Eclipse-II. With this
addition, the platform can now move along the y-direction at
an end-effector singular configuration by changing the
position of the spherical joint along the linear guide, whereas
it is not necessary for the circular column to move [see Fig.
10(b)]. The additional actuator results in the elimination of
the end-effector singularity within the workspace of the
mechanism. Fig. 11 shows that the condition number of the

forward kinematics Jacobian (now 76×∈ RJ f ) of Eclipse-II

with the extra degree-of-freedom reduces significantly from
that one corresponding to Fig. 8, at the tilting angles of 90°
and 270°.

4 Stiffness Analysis

Any external forces applied to the end-effector will cause
some deflections in the links and joints; if these deflections
are significant they can seriously affect the overall accuracy
of the mechanism. For this reason, a careful stiffness analysis
of the mechanism is an integral part of the design process.
Since the rods of the mechanism can be made arbitrarily stiff
by increasing their radius, for most purposes it is sufficient to
consider only the stiffness of the joints. If the spring constant
of each joint is known, then joint stiffness can be analyzed
via the virtual work approach (see [8]). The governing
equations are

CFdX = (15)
where C = JH-1JT is the compliance matrix, and dX, F, J, and
H are respectively the generalized displacement of the
moving frame, the generalized force applied to the moving
frame, the Jacobian of the forward kinematic map, and a
diagonal matrix in which the ith entry is the spring constant of

183



ith joint. If all the actuators are identical, then the joint spring
constant simply acts as a scaling factor for JJT.

The stiffness matrix K is defined to be C-1 (when it
exists). The ellipsoid associated with the stiffness matrix K
can be interpreted by finding stiffness ellipsoid of which the
major and minor axes are given by the singular values and
singular vectors of K, and indicate directions along which the
mechanism as a structure is the most and least stiff. Since it is
inconsistent to combine quantities with different physical
units, we analyze the individual components of the stiffness
ellipsoid separately, i.e., given
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We examine the ellipsoids for each Kij separately. Figure
12 illustrates the position force stiffness ellipsoid (i.e., the
ellipsoid associated with K11) of the Eclipse-II at its home
position and tilting angle 60 degree, respectively; as seen
from the figure the mechanism is stiffer to displacements in
the horizontal direction at tilting angle 60 degree.

5 Workspace Analysis

The workspace of a mechanism is defined to be the set of
all positions and orientations reachable by the moving
platform. The workspace analysis of the Eclipse-II begins
with a description of the moving frame orientation. Many
parameterizations exist for describing orientation, e.g., Euler
angles, fixed angles, exponential coordinates, etc. Due to the
particular architecture of the Eclipse-II, we choose to
describe the orientation of the mechanism using the Z-Y-Z
fixed angles. In terms of these, the rotation matrix is given by

( ) ( ) ( )γβα ZYZ RotRotRotR = (17)

where, α, β and γ are the rotation angles, in succession, about
the Z-, Y-, and Z-axis of the fixed frame. When the
orientation of the moving platform is described as above, the
characteristic of the Eclipse-II mechanism is that the tilting
angle β can reach 360 degrees.

The actual Cartesian workspace is restricted by the
following physical constraints on the mechanism:

(1) stroke limits of the linear prismatic joints;
(2) interferences between the vertical and/or circular
columns;

(a) (b)

Fig. 12. Stiffness ellipsoid: (a) Home position, (b) Tilting angle 60°

Fig. 13. Original workspace of the Eclipse-II mechanism Fig. 14. Enlarged workspace of the Eclipse-II mechanism
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(3) interferences between columns and rods;
(4) rotation limits of the spherical joints.
From the above restrictions the spherical joint limits are

the most dominant. Fig. 13 and Fig. 14 display the workspace
of the Eclipse-II original mechanism and modified one,
respectively. The rotational limits of the spherical joints are
assumed to be ±55 degrees. Under these circumstances the
two rotational angles α and β can reach 360 degrees.

The kinematic parameters in Fig. 13 are the same as
described in Section 3. The workspace has cylindrical shape,

with the radius and height of 90 mm and 340 mm,
respectively. For fixed radius of the circular guide and
vertical column, the enlarged workspace of the mechanism is
presented in Fig. 14. For this last case the spherical joints of
the platform are placed at the apexes of an isosceles triangle,
while for the original situation the ball and socket joints
connect the apexes of an equilateral triangle. The lengths of
the base and height of the isosceles triangle are 680 mm and
570 mm, respectively. The other kinematic parameters are
the radius of circular guide and circular column, 1000 mm,
and the length of the link in the circular column and of the
links in the linear column, 700 mm and 840 mm, respectively.
By simply modifying the shape of the moving platform and
the lengths of the connecting links the radius and height of
the workspace increase to 170 mm and 520 mm, respectively.

Because the link lengths and tool frame location are
different from the original case we have to perform another
singularity analysis of the mechanism. Figures 15 and 16
display the inverse of the condition number for actuator
singularity analysis of the new mechanism in non-redundant
and redundant actuated case, respectively. While the
mechanism presents minor changes in the non-redundant
option, as compared to Fig. 5, a substantial improvement is
obtained in the redundant case, Fig. 7 and 16. Actuator
singularities are not only completely removed but also the
condition number for the whole mechanism workspace is
closed to 1, i.e., the mechanism can be considered as being
generally closed to an isotropic posture [14].

6 Development of the Prototype Eclipse-II

An experimental prototype, with layout presented in Fig.
17 and actuated by servomotors, is currently being developed
to verify the motion performances of Eclipse-II architecture
as a motion simulator. Table 1 describes specifications of the
prototype. The structure consists of a fixed circular guide of
radius of 200 mm, one circular column of the same radius
and two vertical columns. Each of the columns glides
independently on the circular guide and has a prismatic
carriage that moves circularly and vertically, respectively.
Fixed roads, of lengths of 140 mm for the circular column

Fig. 15. Condition number plot of the actuator singularity configuration Fig. 16. Condition number plot of the actuator singularity configuration in
the redundant case

Fig.17. Layout of the prototype Eclipse-II
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and 178 mm for the other linear columns, are attached to the
carriages using revolute joints. The connection to the upper
platform is realized through spherical joints with angle limits
of ±45 degrees. The spherical joints connect the tips of an
isosceles triangle of base and height of 96 mm and 114 mm,
respectively. The shape of the workspace is a cylinder of
diameter and height of 52mm and 88 mm, respectively.

Table 1. Specifications of the prototype
Linear velocity of the platform 12m/min

Linear acceleration of the platform 0.1g
Rotational velocity of the platform 120deg/s

Rotational acceleration of the platform 500deg/s2

Radius of circular guide 200mm
Rotational limit of spherical joint ±45deg

Workspace size ∅ 52 x 88 mm

Up to now the major design problem seems to be the wire
connection for the encoder and power source of the
redundant prismatic joint on the upper platform. Since the
motion of the moving platform can reach tilting and turning
angles of 360 degrees the electrical wires coil up around the
roads and upper platform and jeopardize the motion of the
mechanism. The only available technical possibility is to use
one or two slip ring connectors on the mechanism frame and
upper plate, respectively. A test bench to verify performances
of the selected slip ring and evaluate design parameters
related to the slip ring is currently being built while carrying
the prototype design.

7 Conclusions

This paper deals with the analysis and design of a new
redundant parallel mechanism, the Eclipse-II. The unique
feature of this mechanism is that continuous 360-degree
rotational motion of the platform is possible in addition to the
translational motion. Results for the forward and inverse
kinematics, the singular configuration analysis, stiffness and
workspace evaluation are presented. The original Eclipse-II
mechanism shows both end-effector and actuator singular
configurations within its workspace. Hence, a linear guide,
where one spherical joint moves, is added to the mechanism
to eliminate the end-effector singularity. An actuator is also
added to one of two passive revolute joints on the vertical
columns to eliminate the actuator singularities. For full tilting
and turning motions the mechanism display good
manipulability and a singularity-free workspace. Currently, a
prototype is being build at Seoul National University.
Preliminary calculations indicate a maximum velocity of the
platform of 12 m/min. and an acceleration of 0.1 g. The
prototype Eclipse-II design confirms our practice that parallel
mechanisms should be designed according to some task
requirements and not as general parallel platforms.
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Abstract: This paper deals with the design of a 6 d-o-f wire-
driven manipulator. In the introduction we present its applica-
tion field, why we chose a wire-driven manipulator and a short
state of the art. In the second part we develop a geometrical ap-
proach for the architecture design. In the third part, we present a
kinematic and dynamic model of the manipulator which is used
to compute the manipulator workspace and we introduce the con-
trol principles.

1 INTRODUCTION

1.1 SACSO goals

Our research on wire-driven manipulators takes place within the
SACSO1 project. This project deals with the study of aircraft
behavior and more precisely with the identification of its aero-
dynamic coefficients. The study of aircraft flight has been a big
part of ONERA research since its creation.

The free flight simulation concept in wind tunnels through
an active suspension comes from the most recent robotic re-
searches outcomes, and more specifically from the improvement
in parallel manipulator and force control. Our experience in this
domain at ONERA leads us to the conception of an active sus-
pension to simulate free flight.

This suspension sustains a model-scale in a wind tunnel and
has to reproduce propulsion forces and to create virtual mass and
inertia in order to respect the similitude coefficients.

The suspension must have displacement capabilities for the

1Suspension ACtive pour SOufflerie

model-scale installation and for standard tests purposes. It must
have a high bandwidth force control to simulate the propulsion
effects and to confer an artificial inertia to the model-scale. These
two control capabilities have to be ensured along 6 d.o.f. to al-
low free flight. The suspension should not disturb the streamline
flow and must be implemented in existing wind tunnels with lit-
tle modification. Series type robot structures are too heavy and
cumbersome to cope with theses constraints. For these reasons
we choose a wire-driven suspension manipulator.

1.2 Wire-driven manipulator description

Wire-driven (or tendon-driven) mechanisms are mechanisms us-
ing wires (or tendons) to transmit effort or motion (figure 12). We
are not interested here in those using wires in addition to rigid
links , which are generally serial type manipulators. The prob-
lems (especially the kinematics ones) they raise are quite differ-
ent [1]. We are interested in the ones using exclusively wires.
They are parallel mechanisms [2] [3]. Verhoven and Hiller speak
about "Tendon-driven Stewart Platform" [4].

A first kind of application for wire-driven manipulators is
robot cranes, e. g. in shipbuilding [5] [6]. These manipula-
tors can be classified in the Incompletely Restrained Positioning
Mechanism (IRPM) class. The number of wires is equal to the
number of d.o.f.. A second kind of application is very fast manip-
ulators. The FALCON-7 [7] and the WARP manipulator [8] be-
long to this application field. They can be classified in the Com-
pletely Restrained Positioning Mechanism (CRPM) class when

2these two figures come from Verhoeven web site
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(a) Example of a tendon-
driven serial manipulator

(b) Example of a tendon-
driven Stewart Platform

Figure 1: The two types of wire-driven mechanisms

they use 7 wires or in the Redundantly Restrained Positioning
Mechanism (RRPM) class when they use 8 wires [9] and more.
With CRPM or RRPM, an another type of application is the vir-
tual reality like virtual sport training [10].

2 GEOMETRICAL CONCEPTION OF A WIRE-
DRIVEN MANIPULATOR

2.1 Introducing the method

We propose a geometrical approach to design wire-driven ma-
nipulators which use the designer experience. Although it is a
very old method, it is the quickest one to obtain a preliminary
architecture. In spite of those advantages, this approach does not
seem to be used in this domain.

The fundamental principle of this approach lies in the fact
that a tendon can only exert traction forces along its own direc-
tion.

In the following paragraphs we use this approach to design
a manipulator whose workspace (according to Verhoeven defi-
nition of workspace [11]) is compatible with the application re-
quirements.

We must keep in mind that the function of the wire driven
manipulator is to sustain an aircraft model-scale in a wind tunnel.
That implies that motion and clutter volumes are cylindrical.

In a first phase we design a 7-wire manipulator, but to in-
crease substantially the workspace, we design, in a second phase,
a 9-wire manipulator.

2.2 Application to the design of the parallel wire-driven ma-
nipulator SACSO-7

This first manipulator is a 7-wire parallel wire-driven mecha-
nism. The mobile part is driven by seven wires anchored on it.
They come from actuators and pass through pulleys, both are
fixed on the stationary base frame.

Fixing the position and the orientation of a solid in a 3D
coordinate frame requires the control of only three of its points
which could be the wire anchorages on the mobile part. In our ar-
chitecture, these three anchorages are the apexes of an isosceles

triangle which is materialized by a T-cross (figure 2). The lon-
gitudinal rod controls the pitch and the course while the lateral
one controls the roll3. Logically, the same symmetrical plans
are taken for the aircraft model-scale and the suspension (par-
ticularly

�����������
	
). It gives the T-cross orientation in regards

with the model-scale, and by extension with the wind tunnel and
so with the stationary base frame. Positionning seven wires sym-
metrically on a T-cross at three points for a working solution does
not offer a lot of possibilities. It is clear that four wires and more
linked at the same anchorage point do not give more control than
three. So, there are two possibilities : 1-3-3 and 3-2-2 (figure 2).
Solution 1-3-3 does not work because an arbitrary torque around���

cannot be made (torque can be made in only one way). It
consequently leaves only one possibility: 3-2-2.

LP3
LP3

LP2 LP2

LP1 LP1

3−2−2 1−3−3

O

z

y

x

Figure 2: Only two possibilities for 7 wires linked on three points
with no more than 3 wires on the same point

Wires linked on LP1 will be called front wires and those
linked on LP2 and LP3 will be called back wires.

Now, pulleys locations on the stationary base frame have to
be chosen. Tacpoint between wires and pulleys are approximated
to fixed point. A wire can only pull. So, with a planar reasoning,
LP1 must stay in the triangle described by the three front wire
tacpoints on the base frame. To have the bigger surface, an equi-
lateral triangle is chosen. In the case of the back wires, which
transmit roll motion or effort (around

��
) the problem is differ-

ent. Planar (plan
��� � ������	

) reasoning and sketches are used to
design and to study different solutions.

There are four back wires. The evident solution is a square
(always the maximal surface for a quadrilateral in a circle). Pla-
nar translation motions are limited in this square. Figure 3 shows
roll motion abilities. With this particular pose, wires 2 and 3 are
aligned and only wires 1 and 4 can exert torques, and only in the
negative direction. It is a singular pose, and if the roll increases
beyond that limit, all wires would generate torques in negative
direction. There would be one d.o.f. left.

3since the application is in the field of aeronautics, we use aeronautical refer-
ences and angles
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LP1

LP2

LP3

φ

wires

+

F

view along F

wire

1

23

4

wind tunnel

base frame

T−cross T−cross

Figure 3: The square solution

Another solution, increasing roll abilities, is the diamond as
shown on figure 4. Sketches show that the loss in

���
motion

abilities is greater than the gain in roll abilities. The maximum
motion along

� �
is reached when wires 1 and 3 (or 2 and 4 as

shown on the sketch) are aligned.

F

wire

views along F

T−cross
1

2

4

3

Figure 4: The diamond solution

To get the roll abilities of the diamond solution without its
disadvantages, the principle of a “pendulum” is kept and an an-
chorage point is added. To respect symmetry, the point is added
on the longitudinal rod. Tacpoints form an equilateral triangle
on the stationary base frame. So the roll abilities are the same as
those with the diamond solution and the planar motion surface is
the triangle.

Pendulum solution is chosen, particularly for its roll abili-
ties. As the

����� ����� 	
reflective symmetry must be respected,

there are two possibilities to merge the front wires solution and
the back wires solution. They are shown on figure 6(a) and 6(b).

Starting with given roll and translation along
� �

specifi-
cations, we study geometrically the other motions to obtain the
complete workspace. Top views and lateral views figures permit
to study abilities in pitch motion (around

� �
) and course motion

(around
� �

). It is not difficult to detect singular angular pose if
the T-cross stays at the center of the base frame like it is shown

LP1

LP2

LP3
LP4

1

2

3 4

view along F

F

φ

windtunnel

wires

frame

wire
+

T−cross
T−cross

Figure 5: The pendulum solution

base frame

wire

wind tunnel

Top view

Front view

T−cross

(a)

Lateral view

Z

X
Y

(b)

Figure 6: Two possibilities for SACSO-7

on figures 7(a) and 7(b). We can see that angular abilities de-
crease with the length of the stationary base frame, contrary to
translations abilities along

���
which increase.

α

+

base frame

wire

X

Z

T−cross

(a) pitch with the lateral view

α

+

X

Y

wire

base frame

T−cross

(b) course with the top view

Figure 7: Singular angle pose at the center of the base frame

If the T-cross is not at the center, the analysis is more com-
plex. For example, in figure 8(a), two wires (not really, some
are coincident on the sketch) generate positive torque (around� �

), and two other ones generate negative torque; this pose is
inside the workspace. On figure 8(c), all wires generate nega-
tive torque. This pose is outside the workspace. On figure 8(b),
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one wire generate positive torque and the three others generate
negative torque. It could works, but certainly badly, and T rod
goes through a singular pose to reach it. It is certainly out of the
workspace.

+

X

wire

base frame

α

Z

T−cross

(a) case one, it
works

+

X

wire

base frame

α
Z

T−cross

(b) case two, it
should not work

+

X

wire

base frame

α

Z

T−cross

(c) case three, it
does not work

Figure 8: graphical study of pitch limitation, mobile part not at
the center of the base frame

Same type of analysis can be made for course abilities.

2.3 Operational workspace

Finally, with some geometrical considerations, we have got an
idea of the workspace of the robot. In the two cases (6(a) &
6(b)) the 3D workspace in translation is not smooth enough. It is
dangerous to ride near singularity and corner. Actually, the ma-
nipulator is not commanded in position and the aircraft model-
scale behavior is not well monitored. So we decide to limit the
workspace to a cylindrical base cylinder, like it is showed in fig-
ure 9. It is the same cylinder in both cases.

Figure 9: workspace is restricted to a cylinder

The problem is that this volume (and so the workspace) is
too little. It is directly connected to the form described by the
tacpoints on the stationary base frame. The surface of the circle
inscribed in a square, itself inscribed in a circle, is twice bigger
than the surface of the circle inscribed in a triangle, itself in-
scribed in the same external circle (figure 10). Next, we propose
solutions with nine wires whose tacpoints describe two squares.

2.4 An evolution : SACSO-9

To design this RRPM4 manipulator, we have kept the same con-
cept as SACSO-7, with two square frames instead of triangular

4Redundantly Restrained Positioning Mechanism

2
2

R

R

R

R
2

Figure 10: comparison of surfaces inside square or triangle

frames. So, we have kept the same rod, and have just added one
front wire and two back wires.

wire

base frame
T−cross

(a) solution 1

Z

Y
X

(b) solution 2

Figure 11: Two solutions for the 9-wire manipulator

Figure 11 shows two solutions : the one presented on figure
11(b) is not acceptable because there is a contact between front
wires and wings. It lets solution figure 11(a). An OPENGL based
visualization was developed. Figure 12 shows two view of the
whole suspension.

(a) 3/4 front view (b) 3/4 back view

Figure 12: The manipulator with the model-scale

The same design principle conducts almost to the same ro-
tational motion workspace. Its 3d workspace in translation are
shown on figure 13. We again limit this workspace to the inside
of the cylinder.
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Figure 13: simplified figure of SACSO-9 displacement
workspace

2.5 Conclusion on the method

The geometrical approach presented in this chapter gives just
some ways and ideas for a first design of the manipulator. Of
course, to obtain the complete workspace, it is necessary to use
numerical method : including the study of the Jacobian and the
study of wires tensions. In the following, we expose our modeli-
sation and we explain our method to calculate wire tension and
which is then applied to SACSO-7 and SACSO-9.

3 MODELISATION OF THE WIRE-DRIVEN MANIPU-
LATORS

As shown on figure 14, let us note
���

the first contact points
between wire and pulley on the fixed structure, � � the anchoring

points with the support(ed) model,
�� ���	�
����� � � � , � ������� �� ����� , �� ������� �� � and � � the tension in the cable � which exerts a force

�� � �� ���� � on the support. G is the center of gravity of the scale model
and

�� ��������� �!� .

B 2

B i B 1

B n

nA

+

+

+

+

A 1

A 2

A i

wire

pulley

G

.u1

2 u2

n.un
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.

t

t

t

t1

support

Figure 14: Sketch of a general parallel wire-driven mechanism

As far as notation is concerned,
�"

is used for three com-
ponents vectors like forces, torques, velocities, and # for other
vectors (six components vectors) and matrices.

3.1 Kinematic and Static

We have
$� � � �� �&% �"(' � and

�"(' � � �"*),+ �-/. �� � where
�"�)

and
�-

are respectively the support translation and rotation velocities, so$� �0� �� � % �" ) + �� � %21 �-3. �� �54 . Permuting the triple scalar prod-

uct yields to the well known form of the parallel manipulator
Jacobian : 67 �/8:9<;

(1)

where
67
is the � � -component vector,

;
is the 6-component vector= �" )�-?> and

8
is given by :

8�� = �� � %@%�% ��(A�� � . �� � %@%�% ���A . ��&A >
Let us note

�� B
the resultant force and

�
�C�D )
the resulting mo-

ment in G of the � ���� � . We have
�� BE�GF � � �@�� � and

�H�C�DI) �F � �� � . � �@�� � , so : J �38LK
(2)

where
K

is the � � components vector and
J

is the 6 components

vector M �� B�H�C�DI)ON .

Let us note
KQPSRT�U8LV J

the minimal norm solution of (2),
where

8QV
is the Moore-Penrose5 inverse of

8
, and

K!W�XZY
a vector

belonging to the null space [ � 8 	
of
8

.
We can write the general solution in the form :K	�/KLPSR + KQW�X\Y

(3)

Note that (1), (2), (3) and
8^]_K W�X\Y �3`

imply :; �bac8L8 9(dfe � 8 67
(4)

The model-scale speeds are obtained according to the wires
speeds by the least squares inverse.

To maintain a minimal tension in the wires, we propose the
following expression for

KgW�X\Y
:
KQW�XZYh� �
i A*j<A � 8LVk8 	 KLl\Pnm

where
KQl\Pnm

is a desired value of
K

which is used as a control
variable.

3.2 Dynamics

The dynamic model of the motors is written as :KQo + K!p � Kq�3rsout 7
(5)

where
KQo

is the vector of the driving forces,
K^p

is the vector
of the friction forces and

r o
is a diagonal matrix of motors

inertias. The dynamic model of the scale-model is written as :vv � �Hw ) ; 	 � J ) + Jyx + J
(6)

5 zu{}|~z����zkz������(�
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where
w ) � =�� x i�� j ����� j ���� j � � ) > is the matrix of inertia of

the model-scale at its center of gravity,
J ) � = � x ��` > the

torque of the forces of gravity,
Jhx

the torque of the aerodynamic
forces and

J
the torque exerted by the support. These two equa-

tions are connected by the relations (1) and (2).
The inertia of the engines seen by the model is obtained im-

mediately by expressing the kinetic energy of the whole system

according to the speeds model : 	 � �
 1@; 9 w ) ; + 67 9 r o 67H4
.

By using relation (1) we obtain :w )����� � w ),+ 8LrIoh8:9
But to make the synthesis of the driving forces control cor-

rectors, we must estimate the inertia of the scale model seen by
the motors. For that, we use relation (4). So :r o ���� �3r o + 8 9 a 8L8 9*d e � w ) a 8L8 9(d e � 8
4 WORKSPACE EXPLORATION WITH WIRE TEN-

SIONS

4.1 Wire tension calculus

In order to get a satisfactory behavior of the mechanism and
the actuators, we chose a desired tension in wires

K������
. For

preliminary studies, the scheme to calculate tension is very
simple. It consists in minimizing � K � K lZPSm � 
 while respecting
(2) and

� ��� � K 	�� � o � A . The proposed algorithm is :

Evaluating position
calculating

8KLPSR �38LV JKQW�XZY&� �
i A(j�A � 8LVk8 	 K �����Kq�3K + K A�� � �
if
� ��� � K 	�� � o � A thenKq�3K +�� K A�� � �

with
�! � ��� � K 	 � � o � A

end if

4.2 Workspace capacities in displacement along
� �

and
roll

Because of the complexity of the worspace (3 d.o.f. in displace-
ment and 3 d.o.f. in orientation), it is quite difficult to represent
it (so the sketches used in subsection 2.2). The calculus of the
wire tensions for a given load will help us geting a more precise
definition of this workspace.

For example, we studied in subsection 2.2 three types of 7-
wires manipulators. We saw with a graphical approach that dia-
mond and pendulum are better than square for roll motions, but
diamond is quite bad in displacement along

� �
. We proposed

section 2.4 the 9-wires manipulator SACSO-9, equal in roll ca-
pacities with pendulum but better in displacement along

� �
.

To confirm those feelings, we have calculated wires ten-
sions during displacement along

� �
with other pose parameters

equal to zero, and wires tensions during roll rotation with an-
other parameters equal to zero6. The calculation scheme used
is the one presented in subsection 4.1, with � o � A �#"\`%$

andK&�����I� '(
) � �����

...� �����
*,+
- , � �����I�/.@`Z`%$

. The load is equal to the

weight of the model-scale, 0 `%$ and the drag,
.@`1$

. The max-
imal tension in wires is

"32�`%$
. Dimensions of the T-cross are`�]54 � . `�]6.74 �

and the dimensions of the stationary base frame
are 8 �:9 � . � �;.f] 0 � .

Wires tensions along
� �

displacement are shown on figures
15 to 18, and wires tensions along roll rotation on figures 19 to
22. Lines with little circles7 are for front wires and lines with
little triangles8 are for back wires.

Figures 15 to 18 confirm that roll abilities of the square so-
lution ( <>= 2 0  ) is smaller than roll abilities of the other solution
( <?=A@ `  ). For tranlation abilities along

� �
, figures 19 to 22

show there are smaller in case of square solution, compared to
the case of SACSO-9, despite the fact that back wires are linked
on a similar square in both case. This is because front wires are
linked on a triangle in one case and on a square in the other case.

5 CONCLUSION AND PERSPECTIVES

The work done in the frame of the SACSO project will lead to
the build-up of a prototype of the wire-driven manipulator by the
end of 2002. We already tested the control principles on a one
degree of freedom setup, in which both tendons were force con-
trolled (figure 23). We are now working, in a theoretical way,
on an increase of the workspace of the manipulator through an
optimization process and on the management of the multiple re-
dundancies.
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Figure 15: Square solution (figure 3). It is seen that roll max is
under
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Figure 16: Diamond solution (figure 4). With the chosen load
(no torque load), almost no limitation in roll
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Figure 17: Pendulum solution (figure 5), same abilities than dia-
mond solution
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Figure 18: SACSO-9 (figure 11(a)) same abilities than diamond
solution
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Figure 19: Square solution (figure 3). � o�� � < `�]�� 0 �

−0.2 −0.1 0 0.1 0.2
0

50

100

150

200

250

y in meters

te
ns

io
n 

in
 N

ew
to

n

Displacement along Oy, roll=0 deg

Figure 20: Diamond solution (figure 4).
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Figure 21: Pendulum solution (figure 5). � o�� � < `�]�� �
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Figure 22: SACSO-9 (figure 11(a)). � o�� � < `�] @ �

Figure 23: One d.o.f. testing ground for control principle
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Abstract: In the design of cable-suspended parallel robots, 
the suspension points of the cables, size and shape of the 
moving platform are the design variables. In this paper, the 
workspace of a planar cable robot is characterized as the set 
of points where the centroid of moving platform can reach 
with tensions in all suspension cables. The workspace area 
and global condition index are used as the objective 
functions to optimize the design parameters. The global 
condition index is a measure of isotropicity of the 
manipulator. The design variables are determined for 
different numbers of cables using both methods.     
 
1 Introduction 

 
 Optimal design of parallel manipulators has been studied 
extensively over the last few years. Optimal design is aimed 
at finding the geometry of the manipulator to attain features 
such as largest workspace, best accuracy, isotropicity etc. 
The relevant literature includes work by Gallant and 
Boudreau (2002), Hong and Kim (2000), Fattah and Hadian 
Jazi (2001), Boudreau and Gosselin (1999), Merlet (1997), 
and Gosselin and Angeles (1989, 1991). 
  Optimal design of cable-suspended parallel robots (or cable 
robots) is also an important issue. The relevant literature on 
cable robots includes Albus et al. (1992), Bostelman et al. 
(1999), Kamamura it al. (1998), Verhoeven and Hiller 
(2000), Jeong it al. (1999), Alp and Agrawal (2002a, 2002b) 
and Baretle and Gosselin (2000). However, these papers 
address only limited issues such as workspace, singularities, 
and stiffness of the robots. Our paper focuses on optimal 
design of these robots. 
   Optimal design of cable-suspended robots is aimed at 
obtaining the size and geometry of the moving platform,  
suspension points of the cables and number of the cables. The 
goal of optimization is to maximize the workspace volume 
and the accuracy of the robot within this volume. The 
workspace area is characterized by the set of points where the 
center of mass of the moving platform can be positioned 
while all cables are in tension. Hence, the forces in the cables 
are derived using static equilibrium of the moving platform 
and conditions are imposed to have tension in the cables. A 
method to obtain this workspace efficiently was proposed by 

Fattah and Agrawal  (2002). The accuracy of robot is 
described by the ‘global condition index’ (Gosselin and 
Angeles, 1989), which is a measure of kinematic dexterity of 
the robot over the whole workspace. 
 The organization of this paper is as follows: After a brief 
outline of the underlying models in Sections 2 and 3, the 
optimizations are performed for 3-cable and 6-cable planar 
parallel robots. A comparison of the results is presented at the 
end of the paper.  
 
2 Modeling  
 
Our model of a planar cable robot consists of a moving 
platform (MP) that is connected by n cables to a base 
platform shown in Fig. 1.  
 

 

 
Fig. 1 A model of the planar cable robot 

 
The cable i is connected to MP at  ai  as shown in Fig. 1. The 
center of mass of MP is located at M. The cable separation 
angles on MP are denoted by iα . An inertial reference frame 

FO (XY) is located at O and a moving reference frame FM 
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( xy ) is located on MP at its centroid M. The orientation of 

MP is specified by eθ , the angle between X and x axis. The 
origin of FM is given by the position vector from O to M, 
with xe and ye as components. 
The position vector of point ai with respect to FM is written as  
 
       [ ]T

iiiii
M sbcbr αα=                                             (1) 

 
where c and s stand for cos and sin, respectively and ib is the 
distance between points M and ai. The transformation matrix 
of frame FM with respect to frame FO can be readily obtained 
as  
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Therefore, the position vector of point ai with respect to FO is 
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Upon substitution M

oT  from Eq.(2) into Eq.(1), one leads to 
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Moreover, the position vector of suspension point iA  of 
cable i with respect to reference point O is written as  
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Hence, the vector iiAa  for cable i is  
 









−−−
+−−

=







=−=

ieiieiei

ieiieiei

iy

ix
iii scbcsbyh

ssbccbxd
l
l

rpl
αθαθ
αθαθ00     

(6) 
 
The length of cable li  is given by 
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iyixi lll +=                                                               (7) 

 
 
 

3   Static Equilibrium Equations 
 
The static equilibrium equations of MP can be used  to obtain 
the forces in the cables. The equilibrium equations for MP 
are 

0
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F
F

                                                                    (8) 

 
Using Fig. 2, the equilibrium equations can be written as 
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where iθ  is the angle of cable i  with respect to X  axis of 

frame FO and can be written using Eqs.(6) and (7) as 
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ix
i ,,1,, K=== θθ                                  (12)   

    
and  is  is the shortest distance of M  to cable axis i  and 

can be expressed using Fig.(2) as  )( iieii sbs θαθ −+= . 
 

 
Fig. 2 Model of moving platform and cable i 
 
Eqs. (9), (10) and (11) can be written in matrix form as  
 

fAx =                                                                              (13) 
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(13-a) 
 
and x and f are n-dimensional and 3-dimensional vectors, 
respectively as 
  

[ ]T
nTTTx ,,, 21 K=                                                     (13-b) 

[ ]Tmgf 0,,0 −=                                                            (13-c) 
 
The solution of Eq.(13) depends on number of cables. With  
3 cables, Eq.(13) has 3 equations and 3 unknowns. If the 
three equations are linearly independent, there will be one 
solution for the problem. For more than 3 cables, Eq.(13) is 
an underdetermined system of equations and has many 
solutions if TAA  is invertible. This is the case for our 
problem if the three equations in Eq.(13) are linearly 
independent. The minimum norm solution for Eq.(13) can be 
derived using the generalized inverse of matrix A as 
 

fAAAx TT 1)( −=                                                            (14) 
 
Eq. (14) gives one set of solution for the cable forces. The 
general solution for Eq.(13) can be expressed in the 
following form: 
 

β)()( 1 ANfAAAx TT += −                                        (15) 
 
where )(AN  is the nullspace or kernel of matrix A  and β  
is an  )( rn −  dimensional arbitrary vector. Here, r is the 
rank of matrix A.  
 
4 Workspace Area Optimization  
 
In a given orientation of MP, by choosing a Cartesian grid of 
equally spaced points, the workspace area of the cable robot 
is given by the number of points where the center of mass of 
MP can be positioned while the cables are in tension. To this 
end, the following inequalities should be satisfied: 
 

0≥iT       ni ,,1K=                                                      (16) 
 
The forces in the cables can be obtained by solving Eq.(13) 
over the grid of ex  and ey  in a specific orientation of MP. 
The points where the forces in all cables are in tension are 
feasible points of the workspace. The number of these points 
gives an estimate of workspace for the cable robot.  There 

may be some configurations for the suspension points of the 
cables and cable attachment points to the MP where   the 
workspace vanishes. In other words, we may not get any 
point inside the possible workspace with tension in cables at 
these configurations. Hence, it is necessary to study the 
optimal design of the cable-robot. 
The objective is to determine the manipulator design 
variables to attain the maximum workspace. The manipulator 
design variables are size of MP, the suspension points of 
cables and cable attachment points to the MP, i.e., 
( )iii bhd ,, , the separation angles iα  and the number of 
cables. In order to assure practicality of the solution, the 
following constraints are imposed: 

• The length of the cables are between given  
minimum and maximum values( maxmin lll i << ). 

• The cable forces are between given minimum and 
maximum values( maxmin TTT i << ). 

• The manipulator workspace is singularity free. 
• The workspace of the center of mass of MP is 

max0 xxe <<  and max0 yye << . 
• The size of MP should not be lower than some 

specified values. 
• The vector β  in Eq.(15) is between the given 

minimum and maximum 
values( maxmin βββ << ). The extreme values are 
chosen such that Eq.(15) gives all possible solutions 
for the optimal design. 

After many optimizations runs, we found that when one of 
the cables is located at )0,(1 dO , it gave us the maximum 
workspace. Therefore, we assume that one cable is connected 
to origin O and a second cable is connected to point 

)0,(1 dO . 
The other bounds are as follows: 

5.0min =l , 10max =l , 10=d , 0min =x , 10max =x , 

0min =y , 10max =y , 0min =T , 50max =T      
 
The optimization steps are outlined as follows: 

1. Grid the design variables uniformly within their 
minimum and maximum values; 

2. Specify a region as possible workspace for the 
center of mass of MP in an orientation and grid it 
uniformly; 

3. At a grid point in step 2, perform the kinematic 
analysis and form the matrix A using Eq.(13-a); 

4. Compute the cable forces using Eqs. (13) and (14). 
If the cable forces satisfy Eq.(16), i.e., 0≥iT  

( ni ,,1K= ), one proceeds to step 6.  
5. Use Eq.(15) to derive cable forces. To this end, by 

changing the arbitrary vector β , one can obtain 
tension forces in the cables.  
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6. Using the grid points in Step 2, compute all points 
where 0≥iT  ( ni ,,1K= ). The total number of 
these points (WA) gives the workspace area; 

7. Compute WA for different values of design 
variables using the grid points in Step 1; 

8.  Obtain the maximum workspace, i.e., the maximum 
of all WA’s that are computed in Step 7, and the 
optimized design variables; 

9. Draw the workspace for the optimized design in the 
frame XY. 

 
The 3-cable and 6-cable robots are studied as numerical 
examples next using the procedures described above. In these 
examples, the shape of MP is assumed to be circle and the 
cables are connected to the MP on the circle. The center of 
mass of MP is located at the center of the circle. Moreover, 
the distance ib in Eq.(1) is equal to a, i.e., radius of the 
circle. We considered the shape of the end-effector to be a 
circle in order to limit the number of design parameters.  It is 
possible to use other shapes without any difficulty. 
Moreover, ii αα −+1 ( 1,,1 −= ni K ), is assumed to be 
equal.  
 
4-1 3-Cable Robot 
 
In this example, the three suspension points of the cables 
are ( ) ( ) ( )0,0,,,0, 32221 AhdAdA . Therefore, the design 

parameters are 22 ,, hda . The optimal design is obtained 
using the procedure described above. Since the optimal 
design is obtained by checking all points on the grids 
described in Steps 1 and 2, the solution is globally optimal. 
Here, we present the results for two orientations of MP as 
follows: 
(i) o30=eθ : The optimal design parameters are  

1,3,1 22 === hda  and the optimal workspace is shown 
in Fig. 3;  
(ii) o90=eθ : The optimal solution is obtained for 

1,6,1 22 === hda  and the optimal workspace is shown 
in Fig. 4.  
From these plots, we see that the workspace for case (ii) 
( o90=eθ ) is smaller than the workspace for case (i) 

( o30=eθ ). 
 
4-2 6-Cable Robot 
 
In this example, the six cable suspension points are: 

( ) ( ) ( ) ( ) ( )55543332221 ,,0,0,,,,,0, hdAAhdAhdAdA ,

)( 6,66 hdA . The design parameters of the 6-cable robot are  

66553322 ,,,,,,,, hdhdhdhda .                                   

The optimization problem is again solved for two specific 
orientations of MP: (i) o30=eθ , (ii) o90=eθ . The 

optimal design parameters for 6-cable robot with o30=eθ  
are: 

,0,0,0,8,0,0,1 553322 ======= hdhdhda   

0,4 66 == hd .  

The results for o90=eθ  are: 

,0,4,0,8,0,0,1 553322 ======= hdhdhda   

0,4 66 == hd . 

Fig.3 The optimal workspace for 3-cable robot at 
=eθ 30 o  

 

 
Fig.4 The optimal workspace for 3-cable robot at 

=eθ 90 o  
  
Figs. (5) and  (6) show the workspace for 6-cable robot with 
optimal design parameters at o30=eθ  and o90=eθ , 
respectively. From these plots, we can infer that the 
workspace for 6-cable robot is  larger than the workspace for 
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3-cable robot. Therefore, by increasing the number of cables, 
the workspace increases.  
 
 
 

 
Fig.5 The optimal workspace for 6-cable robot at 

=eθ 30 o  
 

 
Fig.6 The optimal workspace for 6-cable robot at 

=eθ 90 o  
 
 
5 Global Condition Index Optimization  
 
The global condition index (GCI) measures how far away the 
robot is from being isotropic. Large values for GCI ensure 
good performance with respect to force and velocity 
transmission. Therefore, the objective function in this section 
is to maximize the global condition index over the  
workspace. The global condition index over the workspace is 
defined as 
 

∫∫=
ww

dwdw
k

GCI 1
                                                     (17) 

 
where k is the condition number of the Jacobian matrix of the 
manipulator at a given position in the workspace and w  is 
the workspace volume. 
 
The condition number of a matrix is defined as 
 

min

max

σ
σ

=k                                                                        (18) 

 
where minσ and maxσ  are the minimum and maximum 
singular values of the matrix (Gosselin and Angeles, 1989). 
The kinematic condition number varies between 1 and ∞  
and thus k1  bounds its variations between 0 and 1. The 
Jacobian matrix maps the Cartesian velocity t, i.e, the 
velocity and angular velocity of MP to cable length velocity 
vector q&  as 
 

Gtq =&                                                                               (19) 
    
where 
 

 [ ]Tnlllq &K&&& ,,, 21=                                                        (19-a) 
 
and 
 

[ ]Teee yxt θ&&& ,,=                                                            (19-b)      
 

Using the dual relation between kinematics and statics of 
robotic manipulators, the velocity Jacobian for the cable-
robot is 
 

TAG =                                                                              (20) 
 
where A is the n×3  matrix as defined in Eq.(13-a ). The 
global condition index is computed by discretizing the 
workspace and computing k1  at each point thus obtained. 

The average of k1  over the workspace is computed as  
 

∑
=

=
in

i ii kn
GCI

1

11
                                                            (21) 

 
where in  is the number of points in the selected workspace 
where all cables are in tension. 
In order to compute the condition number of Jacobian matrix, 
it should be homogenized. In other words, all elements of the 
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Jacobian matrix should have the same units. To this end, the 
third row of the matrix A in Eq.(13-a) is divided by the length 
L, the characteristic length (Angeles, 1997). The design 
parameters in this section are the same as Section 4 plus the 
characteristic length L. The objective function is subjected to 
the same constraints of Section 4. Also, the same sequence of 
steps is followed during the optimization process, except for 
a change in the cost. 
Here, we use the same examples of Section 4 for 
comparisons. The following results were obtained using the 
global condition index as the optimization cost:  
 
(i) 3-cable robot at o30=eθ : =a  1, =2d 4, =2h 1         
and  L=0.8;  
(ii) 3-cable robot at o90=eθ : =a  1, =2d 3, =2h 2   
and L= 0.8;  
(iii) 6-cable robot at o30=eθ :  

,6,0,2,0,0,9,1 553322 ======= hdhdhda   

6,3 66 == hd  and L= 0.8;  

(iv) 6-cable robot at o90=eθ : 

,4,9,6,0,6,3,1 553322 ======= hdhdhda   

8,0 66 == hd   and L=0 .8  
 
The well-conditioned workspace for the above optimized 
design parameters are shown in Figs. 7 and 8 for 3-cable 
robot and Figs. 9 and 10 for 6-cable robot, respectively. 
 
 

 
Fig.7 The optimal workspace for 3-cable robot at 

=eθ 30 o  
 

 
Fig.8 The optimal workspace for 3-cable robot at 

=eθ 90 o  

 
Fig. 9 The optimal workspace for 6-cable robot at 

=eθ 30 o  

 
Fig.10 The optimal workspace for 6-cable robot at 

=eθ 90 o  
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6 Discussion of Results 
 
As shown from the results, the workspace reduces when the 
global condition index is used as the cost for both 3-cable and 
6-cable robots. It should be noted that it is difficult to attain a 
high GCI in the case of 3-cable robot because the number of 
design parameters is limited. However, the number of design 
variables in the 6-cable robot is much greater than in 3-cable 
robot.  A comparison result of the two methods is shown in 
Tables (1) and (2) for 3-cable robot and in Tables (3) and (4) 
for 6-cable robot. As depicted from the results, it is possible 
to have high GCI in 6-cable robot but it reduces substantially 
the well conditioned workspace. It may be noted that the 
workspace and GCI optimization methods give the extreme 
boundaries for the workspace area. The practical optimal 
design should be somewhere between these two limits.  
 
 
Table 1 Comparison of two optimization methods for      
3-cable robot at =eθ 30 o  

 
 
 
Table 2 Comparison of two optimization methods for       
3-cable robot at =eθ 90 o  

 
 
 
Table 3 Comparison of two optimization methods for      
6-cable robot at =eθ 30 o

 

 
 
 
 

Table 4 Comparison of two optimization methods for       
6-cable robot =eθ 90 o  

 
 
7 Conclusions 
 
Two optimizations for the design of cable suspended parallel 
robots were performed. The first method was based on 
maximizing the total area of manipulator workspace. The 
second method maximizes the global condition index of the 
robot over the whole workspace to achieve a well-
conditioned workspace. The results of optimizations of both 
methods were shown graphically. It can be concluded from 
the discussion on results that by increasing the number of 
cables the workspace increases.  Also, the workspace area 
increases by decreasing the size of moving platform. 
Moreover, more cables can result in a better performance for 
the robot.  
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Abstract: The proposed paper concerns the development of 
a model for the kinematic description of parallel robots to be 
used for kinematic calibration. After a brief introduction to 
existing modelling techniques, some of them are reviewed, 
extended, and merged in order to obtain an innovative 
complete methodology that can be automatically applied to 
general PKMs. The proposed methodology can be applied 
both to the direct (external) and indirect (internal) 
calibration. The obtained model is minimum, complete and 
parametrically continuos (CPC). A general formula is also 
provided, to determine the total number of  necessary 
parameters. Many application examples are given. 

1. INTRODUCTION 

Many sources of error influence the motion accuracy of 
parallel robots, although composed by accurate mechanical 
components. Final position accuracy is mainly influenced by: 
kinematic inaccuracy (due to manufacturing and assembly 
errors in both actuated and passive joints), load deformation 
(due to external forces including gravity) and thermal 
deformation (Wildenberg F., 2001). Each of these factors 
should be addressed with an appropriate compensation or 
calibration methodology. This paper deals with kinematic 
inaccuracy, related to robot geometry. 
One possibility to compensate for geometrical errors is to 
perform a kinematic calibration. The robot is requested to 
reach some desired poses and the reached actual poses are 
measured. Then, calibration is performed analysing the 
difference between the desired and the reached poses. 
Different techniques are available to model and to 
compensate for the errors, they can be classified into two 
different families: parametric and non-parametric. 
Parametric methodologies are based on a geometrical model 
of the robot in which all the possible sources of error are 
represented by a parameter. The structural parameters include 
link lengths, joint axes inclination and joint coordinate 

offsets. The calibration consists in identifying the value of all 
these parameters. Once this operation is performed, it is 
possible to predict the pose error for any robot configuration 
and so it is possible to compensate for them.  
Conversely, non parametric methodologies do not try to 
identify the sources of error. The error is measured only in 
some poses of the workspace; in the other poses the error is 
predicted by interpolation. Non parametric calibration 
requires more simple models of the manipulator, but gives 
good results only in the working space where the robot has 
been calibrated. 
This paper deals with parametric calibration and, more in 
detail, with the problem of constructing a suitable kinematic 
model of PKM (Parallel Kinematics Machines). An effective 
model for robot calibration must be complete and 
proportional (Mooring, Roth, Driels, 1991). Such a model is 
often referred as CPC (Complete and Parametrically 
Continuos) (Zhuang, Roth, 1992). This means that the model 
must describe all the possible sources of error and that, to 
avoid singularities, little geometrical errors must be described 
by small changes in the values of the corresponding 
parameters. Another useful property to simplify calibration is 
‘minimality’. A model is ‘minimum’ if different sources of 
inaccuracy, that produce indistinguishable pose errors on the 
gripper, ‘collapse’ in only one parameter. Methodology to 
automatically derive minimum CPC models for generic serial 
manipulators have already been developed in many versions 
(e.g. Mooring, Roth, Driels, 1991; Zhuang, Roth, 1992). 
Many different calibration strategies have been proposed also 
for individual parallel manipulators, using both direct (e.g. 
Parenti-Castelli, et al., 1995; Jokiel et al, 2000) and indirect 
or self calibration techniques (e.g. Neugebauer, 1999, 
Smollett, 1996), but a general methodology which derives a 
minimum CPC model for parallel robots has not been 
appeared yet. 
This paper makes one significant step in this direction 
integrating available results with new ones and reordering 
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them in simple rules that can be automatically applied to any 
existing PKM with different kinematic chains. In all the cases 
a minimum and CPC kinematic model for geometrical 
calibration is automatically obtained. 
 
Being aim of this work the analyses of geometrical errors, it 
will be assumed that the robot is composed by rigid links 
connected by “ideal” joints (without backlash). 
It will be also assumed that actuators are directly connected 
to the manipulator joints and so errors in the transmission 
kinematics transmissions will be here neglected.  
Calibration makes use of measures of the absolute gripper 
pose and/or the measure of some joint coordinates. Measures 
of joint coordinates include the motion of actuated joints and 
the motion of some non-actuated joints equipped with 
suitable sensors (called “extra sensors”). A joint whose 
motion is measured either because it is actuated or because it 
is equipped with an extra-sensor will be called monitored 
joint. 
The paper is organized as follows: Section 2 presents the 
basic concepts for calibration of serial robots, that, properly 
adapted, will be used to determine the minimum CPC model 
for geometrical calibration of parallel manipulators, 
introduced in Section 3, where also a method to identify the 
total number of parameters is discussed. Section 4 presents 
some applications of the aforementioned method. In Section 
5, an automatic algorithm to build the minimum CPC model 
for PKM is presented, while Section 6 shows some of its 
applications. In Section 7 a numerical methodology to obtain 
a reduced parameter set is introduced. Eventually, Section 8 
draws the conclusions. 
 
2. Methodological Bases (serial manipulators) 

2.1 Introduction  
When choosing a parameter set to describe errors in a 
manipulator geometry, two approaches can be followed. 
In the first case, some parameters are chosen to describe the 
robot structure and errors are represented by variations of the 
parameters, as in the D&H approach (Denavit, Hartenberg, 
1955). However, special care must be put when dealing with 
some situations. For example the base frame and the gripper 
frame must be properly chosen. More over, when prismatic 
frames are present, to achieve minimality, some parameters 
must be set to zero and when a link is composed by two 
parallel revolute joints modified D&H definitions must be 
adopted to avoid singularities (Hayti and Mirmirani, 1985). 
In the second case, the nominal geometry of the robot is 
described by any parametric formulation without putting care 
in minimality and singularities. Errors are then represented 
by a suitable number of parameters describing the difference 
between the nominal manipulator and the actual one. This 
second set of parameters must be defined taking into account 
minimality and singularity issues. 
The error parameters set considered in this paper falls into 
this second group and it’s derived from Zhuang et al, 1992. 
 

2.2 Geometrical parameter set 
 
It has been proved for serial manipulators (Mooring, Roth, 
Driels, 1991) that a model to be complete must contain the 
following number of parameters: 
 
 N=4R+2P+6 (1) 
 
being R and P the number of revolute and of prismatic joints 
in the kinematic chain. This formula is derived under the 
hypothesis that all the joints are actuated (and so their motion 
is monitored by the control system) and that a measuring 
device for all the 6 coordinates of the gripper is available. 
When only a partial measure of the gripper pose is available, 
the number of the identifiable parameters is reduced 
accordingly (Omodei, Legnani, Adamini, 2001): 
 
 N=G+4R+2P (2)  
 
being G the number of measurable coordinates of the gripper 
(G=<6). In milling applications, for example, the tool pose is 
identified by 5 coordinates, being the rotation about tool axis 
redundant. 
Many methodologies to define the parameters to be included 
in the calibration process have been proposed. One of the 
more convenient is based on the observation that the location 
of revolute joints can be expressed in term of two translation 
and two rotations, while for the prismatic joints only their 
direction is relevant. Assuming that the kinematics is derived 
in term of 4*4 transformation matrices, that local frames are 
located with D&H like rules, assigning z axes to all the joint 
axes, the direct kinematics can be expressed as: 
 
 M=A0 A1 A2 …Ai… An   (3)  
 
where M is the matrix describing the gripper pose with 
respect to the base frame, n is the number of DOF (Degrees 
of Freedom) A0 is a constant matrix representing the location 
of the first joint with respect to the base frame, and Ai are 
matrices depending on the i-th joint coordinate and on the i-
th link geometry. 
The effect of the structure parameter errors can be expressed 
reformulating the equation (3) as 
 
 M=A0 B0 A1 B1 A2 B2 … Ai Bi … Bn-1 An C   (4)  
 
where Bi and C have the following form: 
•  Bi=T(x,∆ai)T(y,∆bi)R(x,∆αi)R(y,∆βi) if i+1 is a Rev. joint 

      R(x,∆αi)R(y,∆βi)     if i+1 is a Prism. joint 
•  C=T(x,∆an)T(y,∆bn)T(y,∆cn)R(x,∆αn)R(y,∆βn)R(z,∆γn)  
R(u,∆ϕ) and T(u,∆h) represent rotations and translations 
around axis ‘u’, while ∆ϕ and ∆h (ϕ=α, β or γ, h=a, b, c) are 
the parameters describing one of the robot kinematics errors. 
Bi represents roto-translation errors in frame (i) while C is 
expressed in frame (n)1. 

                                                           
1 In this paper, we will use ∆a, ∆b, ∆c to indicate translation 
along x, y, and z axes and ∆α, ∆β, and ∆γ to describe 
rotations around x, y, and z; ∆q will indicate a variation of a 
joint coordinate. 
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The set of the robot parameter errors is obtained collecting all 
the parameters (∆ai, ∆bi, ∆ci, ∆αi, ∆βi, and ∆γi) of eq (4). 
 
2.3 Joint offset 
 
Offset errors in joint motions are not to be considered 
because it is possible to prove that their effect is un-
distinguishable from that of some of the other parameters 
already included. However it is sometime requested to 
highlight the effects of the joint offset coordinates for 
example because their effect can be easily compensated by 
the robot controller simply adding a constant value to the 
joint coordinates. If the joint offset are introduced in eq(4), in 
order to avoid redundancy and preserve minimality in the 
parameters set, it is necessary to remove some of the 
parameters equivalent to them. This operation can be 
performed in two steps. 
First of all equation (4) is modified introducing for each joint 
a matrix Di describing the coordinate offset error: 
 
 M =A0 B0 D1 A1 B1 D2 A2 … Dn An C   (5)  
 
where Di are defined as 
 
•  Di = R(z,∆qi) if the i-th joint is Revolute 
•  Di = T(z,∆qi)  if the i-th joint is Prismatic 
 
As a second step, equation (5) is analysed in order to remove 
from matrices Bi all the terms un-distinguishable from to the 
just introduced joint offset errors because they produce the 
same pose error on the links that follow. This elimination 
process can be performed utilising differential analyses 
(infinitesimal motions). After introducing matrices Di and 
removing redundancy from Bi, the total number of 
parameters is unchanged. 
Analytical methods to eliminate redundant parameters have 
been proposed by Khalil, et al, 1991, Meggiolaro and 
Dubowsky, 2000.  

3. Parallel Manipulators 

An analogous strategy can be followed for parallel 
manipulators, assumed that they have both actuated and not 
actuated, multi-dof joints, and that both direct or indirect 
calibration can be performed. 

3.1. Indirect and external calibration 

Indirect calibration (also called internal or self calibration) 
technique uses extra sensors to determine the unknown 
geometrical parameters (Parenti-Castelli, et al., 1995; 
Ziegert, 1999, Weck, 1999), while direct calibration (also 
called external calibration) uses external devices, as 
theodolite and absolute measurement systems, to determine 
the kinematic error model (Neugebauer, 1999, Smollett, 
1996). 
External calibration mainly consists in calibrating the pose of 
the frame attached to the mobile base with respect to that of 
the fixed base, and it is similar to the calibration of serial 
manipulators. To perform it, it is necessary to use a suitable 

instrumentation able to measure the 6 coordinates (3 
translation and 3 rotations) of the mobile base. When the 
used instrumentation measures less than 6 coordinates (e.g. 
when calibration is performed using a double ball bar - 
DBB), some of the robot parameters cannot be identified and 
a proper complete external calibration is not possible.  
Indirect calibration is performed using the measure of extra-
sensors that measure the relative motion between some robot 
links and comparing the sensor readings with the value 
predicted on the bases of the nominal manipulator 
kinematics. In these cases, some of the manipulator 
parameters cannot be identified and just a partial robot 
calibration can be performed. 
 

α

l

 
Fig.  1 - Calibration of a PKM using a double ball bar and 
extra-sensors. 

 
An example is reported in figure 1 where calibration of an 
hexapod is performed on the basis of the length l measured 
by the DBB, and on the angle α (leg’s inclination). Measures 
of α  and l are useful to calibrate the relative poses between 
the joints, but are not suitable to determine the location of the 
bases frames.  

3.2. Geometrical Parameters of a PKM 

As a principle, the criterion developed for serial manipulators 
for the identification of the geometrical parameters described 
in Section 2 can be applied also to parallel manipulators, 
taking into account that PKMs make use of both actuated and 
not actuated joints, single-dof or multi-dof, as universal and 
spherical joints. Universal joints are kinematically equivalent 
to a sequence of 2 revolute joints, and can be modelled 
accordingly. To obtain a 3-dof joint, a third R joint, allowing 
a rotation about the leg axis, is added. Conversely, spherical 
(ball and socket) joints uncertainties depend only on the three 
coordinates of their center, while imperfections in the 
spherical motion are generally neglected. Thus, the minimum 
and complete parameter set is affected by the joint typology. 
 
3.2.1 PKMs with R and P joints 
 
When the mobile base is connected to the fixed base by ‘L’ 
legs, we can defined ‘L’ equivalent serial kinematic chains 
(one for each leg), all of them having in common the base 
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and the end effector. However, many joints are not actuated 
and the corresponding joint offsets should be neglected in 
defining the parameter set, at least if the corresponding joint 
coordinate is not measured by extra sensors. The correct 
number of parameters, for each leg, is then reduced and 
eq.(2) becomes: 
 
 NL=G+3RL+PL+gL (10)  
 
where ‘gL’ is the number of the monitored joint coordinates, 
RL and PL are the number of revolute and of prismatic joints 
of the leg, and G is the number of measured coordinates of 
the mobile base. 
The parameters set can be obtained rewriting equation (5) for 
each leg and removing from them the matrices Di associated 
to non monitored joints. We get 
 
 NT=6(L-1)+3RT+PT+G+gT (11)  
 
where RT and PT are the total number of R and P joints of the 
PKM. The parameter set is minimum, complete, and 
continuous. For a general PKM, the number of parameters 
indicated by eq (11) is quite large, but some of them can be 
neglected because they have a very small effect on the PKM 
precision. This subject will be analysed in Sect. 7. 
 
3.2.2 PKMs with R, P and S joints 
 
Considering the case of actuated joints, equation (2) 
transforms as 
 
 NT=G+4RT+2PT+3ST (12)  
 
where S is the number of the spherical joints. For the case of 
unactuated joints, one parameter for each dof must be 
eliminated; thus, equations (10) and (11) are still valid. As a 
result, in general, there is no explicit indication on the 
number of spherical joints in eq(11).  
However, to take into account some “special” or “singular” 
cases described further in the paper (e.g. SS links), equations 
(10) (11) must be generalised as 
 
 NL=G+3RL+PL+gL +sL (13) 
 
 NT=6(L-1)+3RT+PT+G+gT+sT (14)  
 
where s is the number of the singular links. 

3.2.3 Indirect Calibration 

As already mentioned, when indirect calibration is 
performed, the pose of the frames on the fixed and moving 
base cannot be determined and the number of the observable 
parameters is reduced by 6 (the DOFs of the frame) for each 
base; 12 for the whole manipulator. In fact in this case the 
bases’ geometry is defined only by the relative positions of 
the joints and not by their absolute location with respect to 
the base frame. For instance, considering a general Stewart-
Gough platform with 6 spherical joints for each base, we 
need 3 parameters to define the relative distance between the 
first three spherical joints plus 3 parameters for each other 
joint (the distance of the considered joint from the first three). 
In total we get 3+3(S-3)=3S-6 parameters for each base. 

4. Identification of the total number of parameters: 
some applications 

This section analyses some simple cases, in which the 
number of useful parameters for calibration is easily 
identified. These cases are used to clarify the presented 
methodology for the automatic identification of the parameter 
set.  

4.1. Stewart-Gough platform 1: SPS 

 
The parameters set of a standard Stewart-Gough platform can 
be identified as follows. 
 

 
Fig. 2 – Stewart-Gough platform. Dashed frames are 
“intrinsic frames” defined on the joints, continuos frames are 
the “user frames” 

 
Fixed base: A “user frame” is created on the fixed base and 
three parameters are necessary to define the location of each 
spherical joint. We get a total of 6*3 parameters. 
Mobile base: As for the fixed base we get 18 parameters. 
Legs: each leg is composed by two spherical joints connected 
by a prismatic joint. Each leg then requires 6+2P=8 
parameters.  
 

sinϕ=λ/l

ϕ

l=lcosϕ≅ l

λ
l

 
 Fig.  3 - actuated SPS leg  (λ<<l � cos(ϕ)≅ 1) 
 
Total number of parameters: NT = 2*18+6*2 = 48 
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In this simple case, the same results can be obtained 
observing that we need 3 coordinates for each spherical joints 
(their coordinates on the bases) plus the prismatic joint offset 
and inclination error (λ in figure 3). 
Generally, the angle ϕ is small (the nominal value is λ=ϕ=0), 
so this parameter can be ignored because its effect is 
numerically indistinguishable from the joint offset (sinϕ≅ 0), 
meaning that an error on ϕ doesn’t significantly affect the 
distance between the two joints. 
 
Total number of parameters: NT = 2*18+6*1 = 42 
 
This parameter set has been adopted during the external 
calibration of several PKMs (e.g., Jokiel, et al. 2000) 
 

4.2. Stewart-Gough platform 2: URPU  

Stewart-Gough platform is usually realised using universal 
joints in spite of spherical ones, due to their limited 
performance. Generally, the joints of one base are realised 
with universal joints plus rotational joints, while the others 
with universal joints. We assume that also in this case we are 
interested in representing the mobile base motion with 
respect to the fixed one in the more general case and so the 
user base frames can be freely assigned on them. 
On each of the 6 legs there are 5 not actuated revolute joints 
and one actuated prismatic joint. We get 
NT=6*(G+3RT+PT+gT)=6(6+15+1+1)=6*23=138 
 

R R R P R R

h1 h2

L1 L3 L4 L5L2

J1 J2 J3 J4 J5 J6

Fig 4 – a six-joints URPU leg 
 
Calibrating a so large number of parameters can be a problem 
but some of them can be neglected because URPU legs are 
usually realised with intersecting and orthogonal joints axes 
(Fig.4); their nominal value is h1=h2=0, ϕ=90° (Wang et al, 
1993a, 1993b). In this case, little errors in many of the 
structural parameters do not affect significantly the mobile 
base pose (e.g. the relative orientation between joints J1-J2 or 
J5-J6). As a further example, if the joint inclination changes 
just a little during PKM operation, errors on hi are un-
distinguishable from the offset error of the P joint coordinate. 
These parameters are sometimes neglected during external 
calibration and the URPU leg is modelled as a SPS leg (Patel 
et al., 1997). This is not possible when indirect calibration is 
performed using extra-sensors on the same joints, because, 

for example, the value of the joint coordinate of J2 is affected 
by its orientation with respect to J1. 

4.3. Stewart-Gough platform 3 

Consider the SPS platform of par.4.1, assuming that 
calibration is performed by a double ball bar (Ryu et al, 
2001). No user frames are defined on the fixed and mobile 
bases. The number of the parameters is then decreases by 12. 
Errors can be also present in the DBB or in its connection to 
the bases. Therefore, 8 further parameters are needed (a DBB 
is cinematically equivalent to an actuated leg):  
Total number of parameters: NT = 48-12+8=44. 
The parameter set is composed by the coordinates of the 
center of the spherical joints and by 2 parameters for each leg 
(joint offset and λ). 
The number of parameters can be reduced with a proper 
choice of the reference frames on the bases: the origin is 
located on one sphere S1, being the x axis directed toward a 
second sphere S2, and y axis chosen in such a way that a third 
sphere S3 lies in the x-y plane. As a results, the following 
coordinates error must be neglected: ∆x, ∆y and ∆z for S1, ∆y 
and ∆z for S2 and ∆z for S3. 

4.4. 6 dof PKM with fixed length leg: PSS 

The analysed PKM is described in (Ryu et al, 2001). It is 
similar to platform 3, but the legs have constant length. The 
mobile base is actuated by moving the ends of the legs on 
prismatic joints of the fixed base.  
For the external calibration 5 parameters are necessary to 
define the position of the moving end of each leg (4 to define 
the joint axis, 1 to define the position of the spherical joint on 
the line), 1 parameter is necessary for each leg (its length), 3 
parameters are necessary for each spherical joint on the 
mobile base. 
Total number of parameters: NT=6*(5+1+3)=54. 
 

 
Fig. 5 – a-6 leg PSS PKM.  
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If indirect calibration is performed by a DBB, in analogy 
with the other cases, we get: 
Total number of parameters:  NT=54-12+8=50. 

5. General algorithm for the automatic identification of 
the parameters of a PKM 

5.1. Introduction 

The general concepts presented in the previous section can be 
systematised and an algorithm to automatically generate the 
parameter set for a general PKM in obtained. 
The strategy will be based on the following steps: 
1. On each kinematic train, as many frames as the joints 

number are created: one is the intrinsic frame while the 
others are called auxiliary frames. 

2. If external calibration is performed, a second user frame 
is created on the fixed and the mobile bases. This frame 
is freely located on the bases according to the user needs. 

3. For each leg, a matrix expression representing the pose 
of the mobile frame with respect to the fixed frame is 
generated by a multiplication of the transformation 
matrices associated to the link frames. For external 
calibration, the user frames of the bases are considered, 
while in indirect calibration the implicit frames will be 
considered. 

4. Suitable matrices to describe the sources of errors will be 
then inserted. 

5. The matrix equations will be analysed to extract the 
PKM parameters. 

 
When applied to serial manipulators, the resulting 
methodology will be equivalent to those described in Sect. 2. 
 

5.2. Definition of the intrinsic frames 

To define the intrinsic frame of a link, firstly a suitable 
number of joints of the link are selected, to completely define 
the position and orientation of the frame. Many choices can 
be sometimes made, all resulting in different but equivalent 
parameters sets. Available cases are described in the 
following.  
RR-links: two non parallel R joints can define the intrinsic 
frame as follows. One frame axis (e.g. z) is coincident with 
the first joint axis, while a second axis (e.g. x) is located on 
the common normal. 
SSS-links: three spherical joints can define an intrinsic frame 
as follows. Origin in S1. Axis xi toward S2, axis yi in such a 
way that the z coordinate of S3 is null. 
PPS-link: origin of the frame in the spherical joints, axis zi 
parallel one prismatic joint axis, axis xi defined by cross 
product of the two prismatic joint axes. 
 

zi

R2

R1

xi

yi

S3

S2
S1

zi

xi

yi

 
Fig 6 – Definition of intrinsic frames for RR and SSS links. 
 
RS-link: axis zi coincident with the revolute joint axis, axis xi 
toward the spherical joint.  
PSS-link: origin of the frame in one spherical joint, axis zi 
parallel the prismatic joint axis, axis xi laying in the plane 
passing through zi and the second spherical joint.  
 
When defining the intrinsic frame PS-joints can be 
considered as R joints. No parameters are defined in this case 
for the prismatic joint offset which is assumed null. 
 

SR

zi

xi

yi

                  

P1

S

zi

xi

yiP2

 
Fig 7 – Definition of intrinsic frames for RS and PPS links 

 

S1

P

xi

S2

zi yi

 
Fig. 8 – Definition of intrinsic frame for PSS links 

 
Exceptions: 
The geometry of some links does not allows a complete 
automatic definitions of an intrinsic frame. This case are the 
SS and the PS links. 
SS-link: origin of the frame is S1, axis z toward S2, 
orientation of x and y axis arbitrary (but orthogonal to z 
axis).  
PS-link: origin of the frame in S, axis z parallel to P, 
orientation of x and y axis arbitrary (but orthogonal to z 
axis). 
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S

zi

xi

yi

P

 
Fig. 9 – Definition of intrinsic frames for SS and PS links 
 
Singular cases can also appear for particular joint alignments 
(e.g. for two parallel RR joints there are an infinitive number 
of common normals and the origin of the frame is not 
completely defined). In these cases, a different group of 
joints must be selected to define the intrinsic frame. If this is 
not possible, the intrinsic frame is constructed arbitrarily 
assigning one ore more of its 6 coordinates.  

5.3. Definition of auxiliary joint frames  

Although the construction of these frames is not mandatory, 
it can simplify the identifications of the parameters errors as 
well as the writing of the kinematics equations. One of these 
frames coincides with the intrinsic frame, while the others 
can be constructed using the following rules. 
Frame of revolute joints: Axis z is the joint axes. Axis x is 
chosen to lay on the common normal to the joint axis and 
axis z of the intrinsic frame. As in the standard D&H 
methodology, if with nominal geometry the two mentioned 
axes are parallel to each other, the origin of the frame is 
freely translated along z. 
Frame of prismatic joints: Axis z is parallel to the joint axes. 
axes x is defined as for revolute joints. As in the standard 
D&H methodology the origin of the frame can be translated 
in order that in the assembly configuration it coincides with 
the origin of the frame associated to the first revolute joints 
which follows it. 
Frame of spherical joints: The origin of the frame coincides 
with the center of the joints and the frame axes are parallel to 
those of the intrinsic frame. 

5.4. Joint assembly and joint motions 

If all the mentioned joint frames are defined with the given 
rules, prismatic and revolute joints axes will coincide with 
the z axes of a local frames. The relative assembly of the two 
links can be then described simply by a rotation and/or a 
translation around this z axis. One of this rototranslation will 
coincide with the joint coordinate. Spherical joints will 
require a 3 dof rotation to describe the joint motion. 
Joints assembly and motions will be then described by joint 
matrices Gi defined as 
 
•  Gi=T(z, hi)R(z,qi)  for revolute joints 
•  Gi=T(z,qi)  for prismatic joints 
•  Gi=R(x,y,z,qi,qi+1,qi+2)  for spherical joints 
 
where R(x,y,z,qi,qi+1,qi+2) represents a 3 dof rotation matrix 
which is often represented by the product of three elementary 

rotations around concurrent axes R(x,qi) R(y,qi+1) R(z,qi+2); 
however this representation is not completely equivalent 
because a spherical joint allows three simultaneous rotations 
while the representations of a sequence of three elementary 
rotations is “asymmetrical” with respect to elementary 
rotations and is singular for qi+1=±π/2. 
All the mentioned matrices describe joint motions with the 
exception of the translation T(z,h) in the revolute joints 
which describe an assembly condition. 
For each leg it is possible to express the pose of the mobile 
base with respect to the fixed one by the product of all the 
matrices describing its links geometry and its joint motion: 
 

M=Ef1 Ef2 G1 H1 G2 H2 ... Gn Em2 Em1 (15) 
 
Where Ef1 is the nominal pose of the intrinsic frame of the 
fixed base with respect to the user frame, Ef2 is the nominal 
pose of the auxiliary joint frame on the base with respect to 
the intrinsic frame (Fig. 10), Em1 and Em2 have for the mobile 
base the same meaning that Ef1 and Ef2 have for the fixed 
one, Hi are “link” matrices describing the link geometry in 
term of the relative pose between the frames assigned to the 
involved joints (Fig. 11). 
Since eq(15) must be rewritten for each leg, some matrices 
should have 2 subscripts (i.e. Ef2,k Gi,k, Hi,k and Em2,k for leg 
k) but for simplicity the second one is omitted. In contrast, 
Ef1 and Em1 are identical for all the legs. 
Equation (15) is for one leg of the PKM analogous to eq(3) 
for serial manipulator. Similarity is evident adopting the 
following corrispondence: 
 

A0= Ef1 Ef2 
Ai= Gi Hi 
An= Gn Em2 Em1 

 

Ef1

Ef2,3

Ef2,2

Ef2,4 intrinsic frame

auxiliary joint frame

user frame

Ef2,1=I4*4
J1,2

J1,1 J1,3

J1,4
J1,i joint 1 of leg i

 
 
Fig. 10 – Transformation matrices between user, intrinsic and 
joint auxiliary frames for fixed base. Example for PKM with 
4 legs. Mobile base is defined analogously. 
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i

HiGi

i-1

Hi-1

qi

intrinsic frame

auxiliary joint frame

joint i

 
Fig. 11 – Transformation matrices between frames defined on 
links with 2 joints. 

5.5. Description of geometrical error (parameter set) 

Assuming that local frames are assigned in such a way that 
prismatic and revolute joints are directed as z axes, errors in 
the geometrical parameters for a general joint can be can be 
described generalizing the rules already given in section 2 for 
serial robots: 
 
•  Bi=T(x,∆ai)T(y,∆bi)R(x,∆αi)R(y,∆βi) for R joints 
•  Bi=R(x,∆ai)R(y,∆bi) for P joints 
•  Bi=T(x,∆ai)T(y,∆bi)T(z,∆ci) for S joints 
•  Ck=T(x,∆ak)T(y,∆bk)T(z,∆ck)R(x,∆αk)R(y,∆βk)R(z,∆γk)   

(k=f,m); for indirect calibration Ck is the identity matrix. 
 
For each leg, equation (15) is then modified as: 
 

M=Ef1 Cf Ef2 B0 G1 H1 B1 G2 H2 ... 
     … Bn-1 Gn Bn Em2 Cm Em1     (16) 
 
Eq. (16) is for one leg of the PKM analogous to eq. (4) for 
serial manipulator. Similarity is evident adopting the 
following corrispondence: 
 

A0B0= Ef1 Cf Ef2 B0  fixed base geometry and errors 
Bi=Bi      link errors 
Ai= Gi Hi joint motion nominal links 

geometry 
AnC= Gn Bn Em2 Cm Em1 mobile base geometry and errors 

 
However, to avoid redundancy, on some legs not all the 
parameters of B0 and Bn must be considered. 
The parameters to be neglected are those utilized to define 
the intrinsic frame of the bases. For example if the intrinsic 
frame of the base is defined by SSS joints, no parameter error 
is defined for S1, only T(x,∆a2) is defined for S2 and only 
T(x,∆ai)T(y,∆bi) for S3. All the other joints will be given to 
full parameters set as described above. 

As a further example, if the intrinsic frame of one base is 
described by RR joints, no parameter errors are defined for 
R1 while for R2 it is necessary to use T(x,∆ai)R(x,∆αi). All 
the other joints will have a full parameter set. 
More over, if the intrinsic frame of one base is described by 
RS joints, no parameter errors are defined for R while for S it 
is necessary to use T(x,∆ai). All the other joints will have a 
full parameter set. 
The general rule is that a parameter must be inserted only if 
its variation doesn’t change the position or the orientation of 
the intrinsic frame of the base. When performing external 
calibration, an alternative equivalent formulation is also 
possible: all the joints of the bases are given the full set of 
parameters but the 6 parameters defining position and 
orientation error of the intrinsic frame with respect to the 
fixed one are neglected (Cf=Cm=I4*4). 

5.6. Extraction of the geometrical parameter set 

If all the joints are monitored, then the list of the parameters 
contained in the matrices Bi and Ck described in the previous 
paragraph give a complete set of parameters describing 
geometrical inaccuracy. Otherwise, a list of the parameters is 
obtained applying the procedure already discussed in section 
2. For each leg: 
1. matrices Di describing the joint offset errors are 

introduced in eq(16) as it was done in equation (5),  
2. error undistinguishable from the joint offsets are 

removed 
3. parameters describing joint coordinate offsets of non 

monitored joints are removed 
4. the list of the error parameters is compiled collecting all 

the remaining parameters errors 
 

i
i-1 i+1

x i-1

yi-1 ∆a i

∆bi

∆cizi-1
i

li

S1 S2

∆qx

∆qz

∆qy

 
Fig. 12 – Analysis of the redundant parameters on a SS link 
 
If the PKM doesn’t contain S joints, the elimination process 
can be performed using the same algorithm proposed by 
Khalil et al, 1991, Meggiolaro et al, 2000, for serial robots.  
While performing step 2, as already mentioned for the serial 
manipulators, a parameter error is generally removed for each 
joint offset parameter introduced in step 1 and the total 
number of parameters  is so unchanged. This general rule is 
violated in some cases involving spherical joints when a 
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singular situation happen during the definition of the intrinsic 
frame of the link. 
As an example, let us analyze the case of the SS link 
represented in Fig. 12. Since the three rotations of the joint 
are contemporary and not constrained by a particular 
sequence, they can be represented in a frame of arbitrary 
attitude: for simplicity they are represented in a frame having 
the y axis coincident with the link axis. An infinitesimal 
analysis of the error propagation in the kinematic chain leads 
to the following results. Error ∆ai is equivalent to -∆qzi-1li and 
∆ci is equivalent to ∆qxi-1li; therefore, ∆ai and ∆ci must be 
ignored. Even if the effect of ∆qyi-1 is not propagated to  the 
gripper, this rotation error  produces effects that are not 
equivalent to ∆bi or to any other parameters and so just two 
parameters (and not three) are eliminated; ∆qx, ∆qy, and ∆qz, 
are to be discharged because the joint is unactuated. As a 
result only ∆bi survives. 
 

6. Final examples 

6.1. Example 1: 6 RSS  

Consider a generic 6RSS PKM, with rotational actuated 
joints. The i-leg is shown in Fig. 13 and fig. 14.  
 

q

mobile
base

fixed base

 
Fig. 13 – One leg of a PKM with RSS legs. Actuators are on 
R joints. 
 
The complete transformation matrix Mi, describing the 
position and orientation of the gripper with respect to the 
reference frame, comprehensive of all possible geometrical 
and joint offset error parameters of the i-leg, is (Fig. 14): 
 

Mi=Ef1 Cf Ef2,i B0,i D1,i G1,i H1,i B1,i D2,i G2,i H2,i ⋅ 
⋅ B2,i D3,i G3,i B3,i Em2,i Cm Em1 
 

If internal calibration is performed, some error parameters, 
modelled by matrices B and D, can be neglected, and 
Cf=Cm=I4*4. The complete set of error parameters, both for 
external and internal calibration, is hereafter listed. 
 
 
 
 
 
 

 

Ef1

Ef2,i

intrinsic frame

auxiliary joint frame

user frame

J1,i J2,i

H1,i

J2,i J3,i

H2,i

Em1

Em2,i

G1,i

G3,i

G2,i

 
Fig. 14 - Reference frames and transformation matrices for 
nominal kinematics on leg i (RSS PKM). 
 

Internal calibration 

An intrinsic frame is defined on the fixed base considering 
the revolute joints of leg 1 and leg 2 and on the mobile base 
considering the spherical joints of legs 1, 2 and 3.  
On the RS links an intrinsic frame is constructed with the 
above given rules. Parameter error ∆a is the link length error 
and ∆c is a translation along the revolute joint axis; ∆b is 
discharged because it is redundant with ∆q.  
On the SS link only the link length error is to be considered. 
Results, and corresponding error matrices, are presented in 
the following table. 
 
leg on fixed base R 

joint
RS 
link 

SS 
link 

on mobile base 

i B0,i D1,i    B1,i    ΒΒΒΒ2222,i    B3,i 
1  - ∆q ∆c, ∆a ∆a  - 
2 ∆a,∆α ∆q ∆c, ∆a ∆a ∆a 
3 ∆a,∆b,∆α,∆β ∆q ∆c, ∆a ∆a ∆a,∆b 
4 ∆a,∆b,∆α,∆β ∆q ∆c, ∆a ∆a ∆a,∆b,∆c 
5 ∆a,∆b,∆α,∆β ∆q ∆c, ∆a ∆a ∆a,∆b,∆c 
6 ∆a,∆b,∆α,∆β ∆q ∆c, ∆a ∆a ∆a,∆b,∆c 

 
Further parameters must be also inserted in dependence on 
the measuring system used to collect data. For example if one 
or more DBB are utilised, as already mentioned, 8 further 
parameters are to be considered for each of them. 
Furthermore, if calibration is performed using extra-sensors 
on joints, their offset has to be considered as well. 
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External calibration 

For external calibration, 12 more parameters are added to 
describe errors in the pose of the user frame with respect to 
the intrinsic frame (see the following table). 
 
fixed base (Cf) ∆a, ∆b, ∆c, ∆α, ∆β, ∆γ 
mobile base (Cm) ∆a, ∆b, ∆c, ∆α, ∆β, ∆γ 
 
As a second alternative, we can omit to define the intrinsic 
frames on the two bases and errors of the joints can be 
defined with respect to the user frame (see the following 
tables and assume in this case Cf=Cm=I4*4). 
 
leg on fixed base R 

joint 
RS 
link 

SS 
link 

on mobile base 

i B0,i D1,i    B1,i    ΒΒΒΒ2222,i    B3,i 
1 ∆a,∆b,∆α,∆β ∆q ∆c, ∆a ∆a ∆a,∆b,∆c 

2 ∆a,∆b,∆α,∆β ∆q ∆c, ∆a ∆a ∆a,∆b,∆c 
3 ∆a,∆b,∆α,∆β ∆q ∆c, ∆a ∆a ∆a,∆b,∆c 
4 ∆a,∆b,∆α,∆β ∆q ∆c, ∆a ∆a ∆a,∆b,∆c 
5 ∆a,∆b,∆α,∆β ∆q ∆c, ∆a ∆a ∆a,∆b,∆c 
6 ∆a,∆b,∆α,∆β ∆q ∆c, ∆a ∆a ∆a,∆b,∆c 

 
fixed base (Cf)    − (none) 
mobile base (Cm) 

   − (none) 
 

7. Identification of a suitable reduced set of parameters. 

The algorithms described in the previous sections lead to a 
theoretically minimum and complete parametrically 
continuous set of parameters. For some PKM, the number of 
parameters can be very high. However, as already mentioned 
in the paper, with particular dimension of the links or when 
calibration is performed in a limited portion of the working 
area, some of the parameters may have a very limited effect 
on the mobile base motion and their value cannot be reliably 
identified by calibration. We will call them “unobservable” 
parameters. In other cases two or more parameters may have 
nearly the same effect on the collected data. In these cases it 
is not possible to separate their effects and estimate the 
correct value of all of them. One (or more) of these 
parameters is then “redundant”. 
It is in general advisable to remove unobservable and 
redundant parameters from the model to improve the 
calibration effectiveness because their presence degrades the 
identification of the numerical value of the parameters 
especially in presence of measuring noise or of not modeled 
sources of error. 
In this paragraph a methodology to identify the undesirable 
parameters is summarized.  
We will indicate with Λ the set of the geometrical parameters 
of the PKM, with Q the joint coordinates and with Φ the set 
of internal or external coordinates that are measured and used 

for calibration. On the bases of the PKM kinematics it is 
possible to write the calibration equations 
 
 Φ=Φn+∆Φ =F(Q, Λ)= F(Q, Λn)+J∆Λ 
 
with 
 

∆Φ=J∆Λ  J= J(Q)=∂Φ/∂Λ 
 
where subscript n marks the nominal values, ∆Φ is the 
difference between the measured value of Φ and the value 
predicted by the nominal geometry and ∆Λ represent the 
errors in the robot parameters to be estimated. 
Collecting data for many PKM configurations (1, 2, … i, ..n), 
for each of them we can write 
 

∆Φi=Ji ∆Λ 
 
and, grouping equations of all the poses:  
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the value of ∆Λ can be esteemed with minimization 
techniques. Three of them are presented in (Omodei A., 
Legnani G., Adamini R:, 2001). For example, a recursive 
least squares algorithm leads to  
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where Ki is a so-called gain matrix, ∆Λi is the i-th estimate of 
∆Λ after the i-th measure of ∆Φ has been considered, R is the 
covariance matrix of Φ representing uncertainty in the 
measuring sensors and Pi is an estimation at the i-th step of 
the uncertainty of the parameters error ∆Λi. P0 should be 
initialized to suitable large values (Mooring et al, 1991). 
 
Detection and elimination of the redundant parameters can be 
performed by analysis of matrix J (rank and null space), of 
matrix Pn or using iterative elimination. These procedures 
lead the identification of a reduced set of parameters that can 
be profitably used for the PKM in hand. 
Numerical methods to eliminate redundant parameters have 
been presented also by Besnard et al, 2001, Khalil et al, 
1991b. 
 

8. Conclusions 

The paper has presented a complete methodology for the 
identification of the geometrical parameter set necessary to 
describe inaccuracy in the kinematic structure of a generic 
PKM. 
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The methodology, that can be applied to any existing PKM, 
supplies a minimum, complete and parametrically continuous 
model of the manipulators. It can be applied both to intrinsic 
(internal) and extrinsic (external) calibration. 
The methodology identifies the parameters describing 
geometric errors of the manipulator, joint offset errors and 
errors in external devices (e.g. double ball bar) used for 
calibration. Furthermore, a general formula to determine the 
total number of  necessary parameters has been presented and 
discussed. 
The paper shows how for some manipulators the number of 
parameters that are theoretically necessary to describe some 
PKM is quite large and a numerical methodology to remove 
the less significant is sketched. 
The final methodology is general and it is an algorithm, this 
means that it can be automatically applied to any given PKM. 
Practical explicative examples are also given. 
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Abstract: This paper focuses on the effects of joint clearance
on the end effector pose accuracy of serial and parallel manipu-
lators. Despite the large number of papers devoted to the mod-
elling of joint clearance, many questions dealing with its effect
are still open. The paper reports simulation results of several
serial and parallel manipulators with clearance in the joints,
with the aim of comparing their positioning accuracy, answering
some questions, and provoking further investigations and discus-
sions on this still debated topic.

1 Introduction

Joint clearance has been clearly recognized to play an important
role in mechanisms and machines. Together with link elastic-
ity it is considered one of the most important factors affecting
positioning accuracy (Bodur and Derby, 1988; Kakizaki et al.,
1993; Wang and Roth, 1988b). It involves, however, contrast-
ing features. On one hand it is a necessary requirement in order
to assemble the mechanism and to allow a correct functioning
of the pairing elements (and of the mechanism itself). On the
other hand it deteriorates the mechanism performances generat-
ing pose (position and orientation) errors of the links, impacts
of the pairing elements, vibrations and noise. Joint clearance
can be eliminated by preloading the pairing elements. However,
preloaded pairs may result in objectionable mechanism sound,
higher power losses and wear, overheating, and overload bear-
ing. Hence, joint clearance is preferred when zero clearance
joints are not explicitly required. In any case, it is quite im-
portant to quantify the effects joint clearance has on the mech-
anism accuracy in order to define the minimum level of suit-
able tolerances that allows the mechanism to achieve the re-
quired performances: specifying unnecessarily close tolerances
would increase the manufacturing cost of the mechanism. More-
over, interesting overconstrained mechanisms have been recently
proposed as three-degree-of-freedom (dof) translational or ori-
entational mechanisms (Gosselin and Angeles, 1989; Zhao and

Huang, 2000). For these mechanisms joint clearance is unavoid-
able. This also calls for an accurate investigation of its effects
on the mechanism kinematic performances. Nevertheless, it is
the opinion of the authors that the influence of joint clearance
is not given the attention it deserves, and its importance is not
fully recognized - especially when performances of open (serial)
and closed (parallel) chains have to be compared. In fact, while
the influence of joint clearance on the accuracy of serial mech-
anisms has been widely investigated (Wang and Roth, 1988b;
Waldron and Kumar, 1979; Kakizaki et al., 1993), only few pa-
pers presented investigations on closed chain mechanisms (Xu,
1987; Innocenti, 1998; Tischler and Samuel, 1998), and com-
parative studies on serial versus parallel mechanisms are partic-
ularly lacking (Tlusty et al., 1999). For instance, some papers
credit parallel mechanisms to be superior to serial ones without
presenting sound evidence. The importance of joint clearance is
not properly considered also in the design of some spatial par-
allel mechanisms where, in spite of the innovative designs and
excellent performances of the ideal clearance-free mechanisms,
the unavoidable presence of joint clearance can compromise or
at least dramatically reduce their kinematic performances (Car-
ricato and Parenti-Castelli, 2002). The effect of clearance is in-
herently stochastic (Shi, 1997), but can be modelled as a deter-
ministic one (Bodur and Derby, 1988). Many papers presented
methods for evaluating the effects of joint clearance in planar
mechanisms (Kolhatkar and Yajnik, 1970; Yin and Wu, 1990;
Garrett and Hall, 1969; Biswas and Kinzel, 1998; Innocenti,
1999; Parenti-Castelli and Venanzi, 2002a) and only a few in spa-
tial mechanisms (Innocenti, 1998; Tischler and Samuel, 1998;
Parenti-Castelli and Venanzi, 2002b). Some of them deal with
1-dof planar and spatial mechanism (Horie et al., 1985; Tavkhe-
lidze et al., 1979; Phillips, 1971); several, more recent, report ef-
fects of manufacturing and joint clearance on mechanisms with
many dof (Innocenti, 1998; Bodur and Derby, 1988; Venanzi,
2000; Parenti-Castelli and Venanzi, 2002b). Most papers assume
a rigid body model for the pairing elements and neglect friction.
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The influence of joint clearance on the accuracy of the link of
interest depends on many factors, such as the size of the mecha-
nism links, the size of the pairing elements, the mechanism con-
figuration, and the direction of the reaction the pairing elements
mutually exchange. Conversely, the knowledge of joint clearance
effects is relevant for the design of mechanisms and, in particu-
lar, for the optimal design of mechanisms geometry and the op-
timal tolerances allocation (Parenti-Castelli et al., 2001), for the
choice of the optimal configuration among those possible of a se-
rial manipulator, and for the re-definition of the singularity loci.
Only kinematic effects of joint clearance are investigated in this
paper, dynamic effects (Dubowsky et al., 1987) being beyond its
scope. In particular, there are questions still to be answered such
as which type of machine (serial or parallel) is superior. The
question is difficult because of the inherent difference of these
machines. Indeed, the comparison would imply consideration of
many factors such as workspace, joint clearance, size of the ma-
chine links, mass of the machine, singularities, etc. (Wenger et
al., 1999). These parameters are difficult to compare, again be-
cause of the different nature of the two types of machines. In this
context, then, it seems somehow useful to show, by means of ex-
amples, a comparative study on the influence of joint clearance
on the accuracy of serial and parallel manipulators.

This paper presents the results of numerical simulations ob-
tained by using an automatic code which can take into account
the effects of joint clearance on the pose of any link of interest in
spatial mechanisms (Parenti-Castelli and Venanzi, 2002b). The
paper has a dual purpose. First, it represents a basis for showing
and discussing clearance effects on the two types of mechanisms
by means of examples, and second, it aims to somehow provoke
a fertile debate and further studies on joint clearance for its im-
portance in mechanism performances. The results of the simula-
tions, in fact, will reveal contrasting effects of joint clearance for
serial and parallel mechanisms. These effects are not yet clearly
recognized in the current literature which, indeed, sometimes re-
ports generic statements attributing a superior behavior to serial
(Tlusty et al., 1999) over parallel manipulators or viceversa (Pa-
tel and Ahmann, 1997), thus generating incorrect points of view.

2 Comparison between the PUMA Manipulator and the
Generalized Stewart Platform (GSP)

This section will compare the behavior of a serial and a parallel
manipulator, both affected by joint clearance. The two manipu-
lators were chosen with similar dimensions, meaning that their
overall size can be compared. Such a similarity criterium is not
particularly significant, as the manipulator properties are very
different: with similar overall size, the serial manipulator has a
larger workspace, while the parallel one has a higher payload.
However, this criterium was chosen because a choice provid-
ing the same workspace and payload for both the manipulators
would have been unrealistic.

The PUMA manipulator was chosen to represent serial ma-
nipulators. It consists of an open chain formed by six binary

Figure 1: The PUMA manipulator

Figure 2: Kinematic model for the clearance-affected revolute
pair

links, interconnected by six controlled revolute pairs. Figure
1 shows the kinematic model of the manipulator in the refer-
ence configuration (henceforth, all lengths are in arbitrary length
units). The manipulator has six dof, and the six revolute pairs
control the position of the end effector (link 6) and its orienta-
tion. Moreover, the manipulator has a spherical wrist with center
at point C, where the last three revolute pair axes intersect. The
three revolute pairs close to the end effector control its orienta-
tion about the wrist center, whereas the remaining ones control
the position of the wrist center itself. All the revolute pairs in the
mechanism are affected by clearance. In order to evaluate the in-
fluence of clearance, a kinematic model providing the clearance-
affected pair behavior is needed. A suitable model, presented in
(Wang and Roth, 1988a), was chosen. The model describes the
behavior of the clearance-affected revolute pair designed as jour-
nal bearing, like the one shown in Fig. 2. This model was chosen
as representative of all the revolute pairs in the PUMA, even if
the actual design of each pair is much more complex. In or-
der to use this model, the geometric dimensions of each pair are
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Table 1: Pair dimensions and clearance magnitude in the PUMA
(arbitrary length units)

Pair Diameter Length Radial Axial
Number (D) (L) Clearance Clearance

( ��� ) ( ��� )
I 200 200 0.064 0.070
II 180 180 0.057 0.060
III 150 150 0.057 0.060
IV 120 120 0.049 0.050
V 80 80 0.042 0.050
VI 80 80 0.042 0.050

Figure 3: Generalized Stewart Platform

needed. With reference to Fig. 2, Table 1 reports the geometrical
dimensions for each pair, together with the magnitude of clear-
ance. As far as clearance magnitude is concerned, a coupling
tolerance H6/g5 - as defined by the UNI ISO 286/1 Standard -
was chosen for all the revolute pairs.

The Generalized Stewart Platform (GSP) was chosen to rep-
resent parallel manipulators (see Fig. 3). It comprises two plat-
forms, one assumed as the frame (base), the other one movable
(platform), interconnected by six serial chains (legs). Each leg is
connected to the base by a universal joint and to the platform by a
spherical pair. Because of design reasons, the spherical pairs are
replaced by three revolute pairs with intersecting axes. Usually,
two of the revolute pairs are realized so as to form a universal
joint (see Fig. 4). In the inferior universal joint, the axis of the
revolute pair consistent with the base is placed on a line tangent
to the circle circumscribing the base itself. Similarly, in the supe-
rior universal joint the axis of the revolute pair consistent with the
platform is placed on a line tangent to the circle circumscribing
the platform. Each leg contains a prismatic pair. All the revolute
pairs are idle, whereas the six prismatic pairs are controlled and
provide the platform with six dof with respect to the base. All

Figure 4: Leg of the Generalized Stewart Platform

the revolute pairs were considered affected by clearance, while
clearance in the prismatic pairs was ignored. Clearance in the
revolute pairs was modeled using the same kinematic models as
in the previous manipulator. All the pairs where assumed iden-
tical; with reference to Fig. 2, their dimensions are

���	��

,�����
�


. As far as clearance is concerned, the same coupling
tolerance H6/g5 was chosen (UNI ISO 286/1 Standard) and the
values ���

��
�� 
���

and ���

��
�� 
���

were obtained.

In order to estimate the influence of clearance on the two
manipulators a clearance evaluation technique was used. This
technique, presented in (Parenti-Castelli and Venanzi, 2002b), is
based on the Principle of Virtual Work. It directly provides the
position and orientation (pose) error of the mechanism end ef-
fector under the action of an external load, once the mechanism
configuration has been assigned. The end effector position error
is intended as a three-component vector representing the differ-
ence between the theoretical and the actual position of a point of
the end effector itself in the Cartesian space. In what follows,
the norm of such a vector has been chosen as the index of the
end effector position error. Similarly, the end effector orientation
error is a three-component vector representing the difference be-
tween the ideal and the actual orientation of the end effector. The
three components can be intended as three infinitesimal rotations
- about three fixed axes - which are needed to rotate the end ef-
fector from the actual to the ideal orientation. The norm of such
a vector has been used to represent the end effector orientation
error.

The technique works when linearity conditions are satisfied,
and the effects of clearance in the kinematic pairs can be linearly
added. In order to have linearity conditions, the two following
hypotheses have to be fulfilled:

� clearance magnitude has to be much smaller than the other
pair dimensions;

� friction between the pairing elements can be ignored.

The two hypotheses are usually acceptable. The technique pro-
vides the end effector pose error when the mechanism configu-
ration and the external load acting on it are given. In order to
perform numerical simulations, an external load representing the
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Figure 5: Path 1 for the PUMA

Figure 6: PUMA configurations at point P on path 1

gravity effect was chosen for both the mechanisms. Such an ex-
ternal load is along the z-axis and has its negative direction (in
the two reference systems shown in Figs. 1 and 3) and is applied
on the end effector (point A in Figs. 1 and 3). Its magnitude is
not relevant since clearance behavior depends only on the load
direction. After choosing the external load, the mechanism con-
figuration has to be assigned. Two paths in the workspace were
chosen instead of a particular configuration only.

2.1 Simulation 1

In the first case, with reference to system (x, y, z) centered
in O shown in Fig. 5, the following path was chosen for
the Puma: the center of the spherical wrist passes from point� ����� �
�
���� �
�
��	� ����
�


to point � ���� �
�
���� �
�
��	� ����
�

and then to point � ���� �
�
��	� �
�
��	� ����
�


. The orientation
of the end effector is constant, and is the same as that shown in
the reference configuration (see Fig. 5). The inverse position
analysis of the PUMA provides, as known, eight possible con-
figurations. In this first simulation four configurations only were
considered. Figure 6 depicts the four configurations in the first
point of the chosen path, when the wrist center is at point P. The
first configuration is drawn in black, the second in red, the third
in green and the fourth in blue.

The same path was chosen for the GSP, and is shown

Figure 7: Path 1 for the Generalized Stewart Platform

Figure 8: Position error (arbitrary length units) versus path 1

in Fig. 7 (for the sake of clarity, Fig. 7 shows the plat-
form and the base only; the legs are not shown). The plat-
form center passes from point

� ����� �
�
���� �
�
��	������
�

to

point � ���� �
�
���� �
�
��	������
�

, and then to point � �

�� �
�
��	� �
�
��	� � ��
�

. Point coordinates are expressed in the

reference system shown in Fig. 7 and centered in O. The orienta-
tion of the platform is constant, and is the same as the orientation
of the PUMA end effector.

Figure 8 shows the position error obtained with the first sim-
ulation. On the x-axis a label associated with the chosen path
is reported (the path was split into 100 different positions); on
the y axis the norm of the position error is reported. The light
gray values represent the position error of the GSP, whereas the
black, red, green and blue values are associated with the four
chosen PUMA configurations. The colors are the same as those
of Fig. 6. It clearly appears that the GSP behaves better than the
PUMA, that is, clearance is less influent in the parallel mecha-
nism. Moreover, it can be observed that configurations III and
IV in the PUMA (green and blue values) are less error-affected
than configurations I and II (black and red values).

Figure 9 shows the orientation error obtained with the first
simulation. On the x-axis a label indicating the 100 positions
the path was split into is shown. On the y axis the norm of the
end effector orientation error is reported. The color association
is the same as for Fig. 8: light gray for the GSP, black for the
first, red for the second, green for the third and blue for the fourth
PUMA configuration. On average, the GSP behaves better than
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Figure 9: Orientation error (radians) versus path 1

the PUMA. However, it has to be noticed that at the beginning
of the path the platform orientation error is much higher than in
the remaining part of the path. This can be explained if the leg
behavior is examined. In the central part of the path, where the
platform is close to the central symmetry position, all the legs
are compressed. Clearance in all the kinematic pairs is taken up
in the same direction. Consequently, the platform displacement
caused by clearance is almost a pure translation, and the orienta-
tion error is very small. On the contrary, when the platform is not
close to the central symmetry position, some of the legs could be
in tension and some other in compression. Clearance in the leg
kinematic pairs is taken up in opposite directions. The platform
displacement, then, is not a translation, and the orientation error
is much higher than in the previous case. Figure 9 shows that the
passage between these two situations is sudden. For the PUMA,
it can be observed that the orientation error is almost constant.
Configuration III gives the same orientation error as configura-
tion IV (the blue points are fully covered by the green ones).
Similarly, configuration II gives the same error as configuration I
(the red points are fully covered by the black ones). Again, con-
figurations III and IV behave better than configurations I and II.

2.2 Simulation 2

The second numerical simulation was performed with the same
external load as in the first one. On the contrary, the mechanism
path was slightly different. Figure 10 illustrates the PUMA path.
The wrist center has the same position as in the first case, but
the orientation of the end effector is different. With regard to the
first case, the end effector was given a rotation of

� ���
about the

y-axis. Its new orientation is kept constant along the whole path.
In Fig. 10 one of the PUMA configurations is shown when the
end effector center is at points P, Q, and R. Again, four possi-
ble configurations were considered. The four configurations are
depicted in Fig. 11, the first one plotted in black, the second in
red, the third in green and the fourth in blue. An identical path

Figure 10: Path 2 for the PUMA

Figure 11: PUMA configurations at point P on path 2

was performed by the GSP (see Fig. 12). The platform cen-
ter passes from point

�	����� �
�
���� �
�
��	������
�

through point

� � �� �
�
���� �
�
��	������
�
 to point � � �� �
�
��	� �
�
��	� � ��
�
 .
Point coordinates are expressed in the reference system shown
in Fig. 12 and centered in O. With respect to simulation 1, the
platform here has been rotated of

� ���
about the y-axis, and its

orientation is constant along the path (likewise the orientation of
the PUMA end effector).

Figure 13 shows the simulation results for the position error
of the end effector. As in the previous case, a label associated
with the mechanism position along the path is reported on the x-

Figure 12: Path 2 for the Generalized Stewart Platform
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Figure 13: Position error (arbitrary length units) versus path 2

Figure 14: Orientation error (radians) versus path 2

axis, while the norm of the position error is shown on the y-axis.
The light gray values are associated with the GSP, whereas the
black, red, green and blue values refer to the four PUMA con-
figurations I, II, III and IV respectively. Inspection of Fig. 13
shows that the GSP has a more regular behavior, and behaves
definitely better than the PUMA. Its position error has two sud-
den variations (jumps), while all the PUMA configurations have
four jumps. As in the previous case, the jumps are due to tak-
ing up clearance in different directions. Figure 14 shows that,
when the orientation error is considered, the serial manipulator
behaves better than the parallel for all the four configurations.
With respect to Fig. 9, it can be noted that changing the plat-
form orientation for the parallel manipulator causes a substantial
reduction of the path portion where clearance is taken up in the
same direction for all legs and the orientation error is lower. Any-
way, even in that portion of the path the PUMA behaves better.

Figure 15: Serial Spherical Wrist

Table 2: Revolute pairs dimensions and clearance magnitude in
the serial spherical wrist (arbitrary length units)

Pair Diameter Length Radial Axial
Number (D) (L) Clearance Clearance

( ��� ) ( ��� )
I 30 30 0.029 0.030
II 25 25 0.029 0.030
III 20 20 0.025 0.030

3 Comparison between a Serial and a Parallel Spherical
Wrist

Finally, two other mechanisms were chosen to study the influ-
ence of clearance in the joints. The first one is a spherical wrist
with serial structure. The mechanism is composed of two binary
links, a frame, and the end effector, interconnected by three con-
trolled revolute pairs (see Fig. 15). The revolute pair axes inter-
sect in a common point, the wrist center (point C in Fig. 15). The
mechanism has three dof, and the end effector orientation can be
fully controlled by the three revolute pairs. The three revolute
pairs are clearance-affected. Their behavior was studied using
the pair kinematic model presented in (Wang and Roth, 1988a)
(like in the previous examples). With reference to Fig. 2, the pair
dimensions are reported in Table 2. The second mechanism is
the parallel spherical wrist shown in Fig. 16. It consists of two
equilateral triangles, one fixed (base) and one mobile (platform).
Base and platform are connected by a spherical pair, centered at
point C (see Fig. 16). The spherical pair is physically realized by
a universal joint centered at C and a revolute pair located at the
platform center, whose axis passes through point C. Three lateral
legs are connected to the vertices of the base by a universal joint
and to the vertices of the platform by a spherical pair, intended as
the union of a revolute and a universal joint. Each lateral leg in-
cludes an actuated prismatic pair. The detailed model for the legs
is shown in Fig. 4. The mechanism has three degrees of freedom,
and the platform can fully rotate about the spherical wrist center.
Its orientation is controlled by the length of the lateral legs. All
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Figure 16: Parallel Spherical Wrist

Figure 17: Path for the Serial Spherical Wrist

the revolute and universal joints are affected by clearance. The
kinematic model for the clearance-affected pairs is the same as
in the previous cases. All the pairs were considered to have the
same dimensions; with reference to Fig. 2,

� � �

,
� � ��


.
The same coupling tolerance H6/g5 (UNI ISO 286/1 Standard)
was considered, thus providing clearance magnitude ���

��
�� 
����

and ���
� 
�� 
���


.
The influence of clearance for these two mechanisms was

evaluated using the same technique presented in (Parenti-Castelli
and Venanzi, 2002b). The two mechanisms were loaded on a
point of the end effector (point A in Figs. 15 and 16). The exter-
nal load is along the z-axis and has its negative direction, and can
be intended as the effect of gravity. Its magnitude is not relevant.

Figure 17 shows the serial mechanism at three positions on
the performed path. The starting configuration is drawn in black.
From the starting configuration, a first rotation of

� ��
 �
was ap-

plied to the second revolute pair. The red configuration was ob-
tained. Then, a further rotation of

��
��
was applied to the first

revolute pair, and the blue configuration was the result. Last, a
rotation of

��
 �
about the third revolute pair was imposed. The

same path was performed by the parallel mechanism. Figure 18
shows the first rotation: the mechanism passes from the black to
the red configuration with a rotation of

� ��
��
about the y-axis.

Figure 19 shows the second rotation in a top view: the mecha-
nism passes from the red to the green configuration with a rota-
tion of

��
��
about the z-axis. Figure 20 shows the final rotation

of
��
��

about the platform axis: the mechanism passes from the

Figure 18: First rotation for the Parallel Spherical Wrist

Figure 19: Second rotation for the Parallel Spherical Wrist

green to the blue configuration. The final configuration, drawn
in blue in Fig. 20, is a singular configuration for the mechanism.

Numerical simulations were performed for the two mecha-
nisms moving along the shown path. The results are illustrated in
Fig. 21: on the x-axis there is a label associated with the mech-
anism configuration as it changes along the path (on which 61
representative points were chosen). On the y-axis the norm of
the end effector orientation error is reported (in radians). In Fig.
21 the norm of such a vector is reported in blue for the paral-
lel mechanism, in red for the serial one. Figure 21 reveals that
the parallel mechanism gives better performances than the serial
one, as its orientation error is always inferior. The only excep-
tion is in the last part of the path: when the parallel mechanism
is close to singularity its orientation error suddenly grows. The
orientation error for the parallel mechanism in the final point of
the path is not reported, as the parallel mechanism is in a singu-
larity configuration, and its orientation error cannot be defined.
Similar results were obtained when the position error of point A
was studied, and are shown in Fig. 22. The position error of
point A is almost identical to the orientation error, as the former
is almost completely caused by the latter. By knowing the orien-

Figure 20: Third rotation for the Parallel Spherical Wrist
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Figure 21: Orientation error (radians) for the serial (red) and the
parallel (blue) spherical wrists versus path 1

Figure 22: Position error (arbitrary length units) for the serial
(red) and the parallel (blue) spherical wrists versus path 1

tation error and the position error of point A, the position error
of the wrist center C could be obtained.

4 Conclusions

In this paper numerical simulations were performed on two se-
rial and two parallel mechanisms, with the aim of evaluating
joint clearance influence on the pose accuracy of the end effector.
Based on the simulation results, the following considerations can
be drawn:

� The influence of joint clearance has to be evaluated case by
case. There is no a-priori evidence that serial manipulators
are less or more sensitive to joint clearance than parallel
ones.

� When comparing two mechanisms (serial and/or parallel),

position and orientation errors may have contrasting values
for the two mechanisms, i.e., one can have a better behavior
as far as position, while the other can be better as far as
orientation.
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Abstract: Many applications in the field of production
automation (material handling, assembly, etc.) require high
operating speeds and accelerations. During the past years
parallel robots proved to be an efficient and suitable
supplement to serial robots. But for a better exploitation of the
possibilities of these new types of robots the weak points of
robots based on parallel structures have to be reduced as much
as possible or – in the optimal case – completely extinguished.
This is the starting point for a new research initiative with a
multidisciplinary character, namely the Collaborative Research
Centre 562 (SFB 562) “Robotic Systems for Handling and
Assembly”. The main goal of the Collaborative Research
Centre 562 is to develop new types of robots based on closed
kinematic chains to improve the structural and dynamic
potential of such robots. The main focus is the modeling and
control of new parallel structures and the consequent usage of
new machine elements. In addition, by means of adaptronics it
is possible to improve the dynamic and stiffness properties of
parallel structures.  The integration of active and
multifunctional elements into lightweight links of parallel
structures and suitable control concepts form an adaptive
compound system minimizing movement oscillations for faster
and more precise robot applications.

1 Introduction

The usage of industrial robots is an important factor for
economy. A survey of the International Federation of Robotics

prognoses an annual growth rate of 15 %. In addition to a
fortification of existing markets, such as automobile industry,
the coverage of new application fields is of particular
importance. In the future a great potential for robot systems is
expected in particularly handling and assembly applications.
The fast growing number of the installed industrial robots
comes along with permanent increasing requirements on the
dynamic performance. Economical as well as technological
reasons require robot systems with improved efficiency data.

To reduce the sequence time for handling and assembly
applications the most essential goal is to improve operating
speeds and accelerations in the working space for given process
accuracy. However, these increasing requirements end in a
vicious circle (Fig.1):

  

high speed
applications

link
stiffening

high dynamic
drives

rising structure stiffness / dynamics

increasing moved masses

requirerequire lead to

Fig. 1: Structural limits of industrial robot development
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The usage of high dynamic drives demands a higher
stiffness of the links synonymous with rising moved masses.
Due to that fact even higher dynamic drives are needed in order
to move not only the handling objects but also the following
links and drives. In other words: Both, the low stiffness and the
high moved masses, cause oscillations that lead to a reduced
quality of the products and shorten the life cycle of the whole
mechanical system.

In addition, gear and joint backlash that are accumulated
throughout the whole structure impair the positioning accuracy
of the end effector. Supplementary, the necessity to lay the
power supply and signal lines to each drive requires elaborate
and not negligible engineering efforts.

Consequently, both contradictory goals, high operating
velocity and high accuracy, cannot be achieved with
conventional robots based on serial kinematic structures.

(a) Serial structure
     Stäubli RX90

(b) Serial hybrid structure
      Fanuc M410i

(d) Parallel hybrid structure
      Stewart-Plattform

(c) Parallel structure
      HEXA parallel robot

Fig. 2: Different types of robot structures

Under these circumstances the request of new robot
systems is of major importance. During the past years parallel
robots proved to be an efficient and suitable supplement to
serial robots based on open kinematic chains (Fig. 2a).
Compared to a conventional industrial robot, a parallel robot
based on closed kinematic chains is a machine that consists of
at least two driven guiding chains to guide a common working
platform with a gripper or tool attached to it. Parallel structures
can be realized with rotational or linear drives. Apart of these
active joints, the parallel structures contain passive - not
actuated - joints with one or more than one degree of freedom.
Fully parallel structures are characterized by the fact that the
amount of chains correspond to the degree of freedom of the
structure. Well-known examples are the DELTA and HEXA
robots (Fig. 2c) (Merlet, 2000). Combinations of serial and
parallel structures are called hybrid structures, which unite
certain advantages of these different structure types. It is

important to distinguish between serial hybrid structures
(FANUC M410I, Fig. 2b) and parallel hybrid structures
(STEWART PLATTFORM, Fig. 2d) (Frindt, 2001, Hesselbach et
al. 2001).

The possibility to mount all drives in the frame or near to
the frame results in low moved masses allowing high operating
speeds and accelerations. Due to the fact that the end-effector is
supported by several guiding chains, further advantages are a
high structural stiffness and a modular construction with
standard elements. Even though parallel structures have
significant disadvantages; first of all a poor workspace to
construction room ratio combined with a limited movability in
the workspace (particularly with regard to the orientation of the
end-effector). Supplementary the passive joints with fi >1, e.g.
cardanic or spherical joints, require considerable expenses.

2 Call for action

A commercial use of these new robot concepts will only be
possible if the mathematical and mechanical design problems
mentioned above are solved. Only a few robots come into a
commercial operation. For example the 200I hexapod robot
from FANUC or the FLEXPICKER DELTA robot from ABB
FLEXIBLE AUTOMATION, which obtains an acceleration of 10 g
and an accuracy of 0.5 mm. But despite of these promising
machines showing the potential of parallel robots, these
machines are single solutions for specific applications. Up to
now comprehensive concepts for the development of parallel
robots do not exist. A call for action for a better exploitation of
the possibilities of these robots lies basically on this drawback.
In the following the interdisciplinary fields of the call for action
are defined:

� The present research activities are focused on a handful
of symmetric kinematic structures, e.g. HEXAPOD,
DELTA, PENTA or five joint robots (RP-1AH from
MITSUBISHI) (Frindt, 1998). Still a lot of possible
parallel structures remain unconsidered. A generic
approach to structure synthesis in terms of given
application has to be developed.

� Actually mainly conventional machine components are
used. It is necessary to develop new solutions for the
complex passive joints with two or more degrees of
freedom. Ditto new technologies, e.g. using adaptronic
elements for an active vibration damping, have met
with no response. By means of adaptronics it is
possible to improve the dynamics and the stiffness of
parallel structures.

� Special characteristics of parallel structures however
require new control functions, like working space
survey or strategies for conflict situation escape.
Considering the high dynamic applications new
positioning and force control algorithms have to be
developed. Especially the integrated adaptronic
elements require special control solutions.
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3 The SFB 562 - a new research initiative

3.1 Organization and main goals

In July 2000, the Deutsche Forschungsgemeinschaft (DFG) has
established a new Collaborative Research Centre on “Robotic
Systems for Handling and Assembly - High Dynamic Parallel
Structures with Adaptronic Components” in Braunschweig, the
SFB 562. Seven research institutes from the Technical
University in Braunschweig and one institute from the German
Aerospace Centre (DLR) are developing new methods and
components related to new types of parallel robots. The
members of the SFB 562 foundation belong to three faculties:
i.e. mechanical (4 institutes) and electrical (2) engineers as well
as computer scientists (2).

The main goal of the Collaborative Research Centre is the
evolution of methodical and component related fundamentals
for the development of robot systems based on closed
kinematic chains in order to improve the promising potential of
these robots, particularly with regard to high operating speeds
and accelerations, which are essential for handling and
assembly applications. In addition, the loading of machine tools
belongs to the target application fields (Fig. 3).
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Fig. 3: Application fields of the SFB 562

Initial point of the investigations is the call for action (see
chapter 2). A consequent exploitation is possible until the
mentioned weak points are reduced as much as possible or – in
the optimal case – completely extinguished. This is the
motivation for the Collaborative Research Centre 562 working
on the subsequent fields:

� Basic investigations for new structure and software
concepts and the modeling of the kinematic and
dynamic behavior with regard to the included
components.

� Robot control and information processing with respect
to integrated sensors and adaptronic elements;
including modular software architecture and parallel
specific robot programming.

� Development and optimization of single components of
the mechanical structure.

Robotcontrol 
Software Hardware

Drive Control
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HMI
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   Joint 
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Fig 4: Research fields

The necessary investigations of the SFB 562 are
demonstrated by means of Fig. 4. According to this the SFB
562 is subdivided into three project fields:

� Modeling
� Robot control and information processing
� New components

In the following three sections, the working fields, the
basic ideas and approaches as well as first results are
demonstrated in detail. Every section will start with the initial
point and the resultant call for action. The outcomes of this are
the intentions and approaches of the SFB 562.

4 Concepts and modeling

4.1 Initial point and call for action

In literature one will find a lot of various parallel structures.
However, up to now there is no comprehensive systematic
classifying and evaluating of parallel structures. Present
approaches summarize known parallel structures or deal with
special classes, particularly with symmetric structures with
three or six degrees of freedom. Parallel structures with four
degrees of freedom or hybrid structures have been almost
ignored.

The dynamic behavior of parallel structures can be
modeled with the existing mathematical and mechanical
methods. To fulfill the requirements of the high dynamic
applications the resulting equations have to be solved in real-
time. Considering the varying payload during robot motion the
equations of motion have to be prepared for adaptive control
concepts.

4.2 Intentions and approaches

4.2.1 Structure synthesis and design methodology

The kinematic features of parallel robots strongly depend on
their mechanical design, the arrangement of the joints within
the chains and the geometrical dimensions.  Starting point for a
generic structure synthesis is a systematic classification of
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parallel robots in consideration of the characteristic properties.
These are for example the number of kinematic chains k or the
dof F using Grüblers formula. This leads to a distribution of the
joint dof intra the kinematic chains (Fig. 5). The structure
synthesis will include extensions by additional branches for
kinematic constraint conditions. These concepts are based on
the idea to integrate plane substructures in spatial structures
using parallelogram guidance mechanisms. Especially
structures with the same kinematic chains belong to a special
structure family. Thus a parameterization, i.e. definition of
characteristic geometric parameters (e.g. link lengths, platform
radius etc.), can be made very easily. This is very important for
the structure analysis and optimization.

Fig. 5: Structure synthesis

Parallel robot development in SFB 562 is based on
knowledge-based-methods. Therefore creating methodical
information databases is a very important factor in structure
synthesis. In contrast to existing design catalogues not only
geometrical parameters but also operating procedures, machine
parts modeled in UNIGRAPHICS (e.g. joints, sensors, links etc.)
and style guides are included. Ditto it is important to classify
structure performance criteria of available components in
preliminary development phases. An internet based dynamic
design catalogue EKAT as a modern data processing technology
will increase the capability of information memories for the
design process (Franke et al., 2001). In consideration of the
modularity of parallel robots construction kits have to be
developed. These extended design catalogues store technical
information in a systematic and effective way. They allow a
fast access to comprehensive and actual information sources.
The knowledge is sorted systematically by a uniquely defined
classification. Selected characteristics subclassify the stored
knowledge and open a solution tree that separates the
catalogues-objects clearly.

By using the knowledge-based-methods a methodical and
complete classification of parallel robots and their components
become possible. Another approach is to assort the demands of
industrial applications, i.e. handling and assembly, in constraint

networks. In order of an application-oriented development, the
“robot catalogues” and the “application requirements” are
linked together for finding an optimal solution.

4.2.2 Kinematic and dynamic modeling and analysis

The general basis for simulation, optimization and design
layout according to given problems in the field of robot control
is the preparation of the kinematic and dynamic models of the
parallel robots. Intra the SFB 562 the multibody simulation tool
SIMPACK is used, because the DLR was actively involved in its
development. The included time integration algorithm ODASSL
for solving differential algebraic equations is well suited for
solving equations of motion of parallel structures (Führer,
1988).

The capability to generate a symbolic code of the equations
of motion of multibody systems is a powerful tool since it
allows a versatile means to include models in independent
working environments. This is in view of simulation,
performing optimization work as well as parameter
identification, control and design an important property.
Furthermore, the efficient programming of the equations of
motion of complex multibody systems in SIMPACK has proven
its ability to provide very good results for real-time
computation. For modeling elastic and flexible bodies an
interface to ANSYS FEM can be used.

This approach will allow to create a simulation and
development environment for all types of parallel structures,
e.g. to specify the drive performance or to identify the
eigenmodes. In opposite to the present description of the
kinematic and dynamic behavior of the parallel robots, the use
of the multibody simulation tool SIMPACK allows a fast
developing process. With respect to the modularity of parallel
structures a SIMPACK library with different kinematic chains as
well as frames and platforms with predetermined parameters is
developed. With the help of this construction kit the modeling
of new parallel structures in SIMPACK can be done very easily.
Considering the parameterization of the kinematic chains and
the platforms multiple variants of parallel robots can be
simulated.

To provide the kinematics and dynamics for the robot
control the equations of motion can be exported in a symbolic
code description. By using the Newton-Raphson iteration
method and the ODASSL time integration algorithm the
equations of motion can be solved independently of SIMPACK in
the different modules of the robot control, e.g. model-based
force control or the inverse kinematic problem (IKP) and the
direct kinematic problem (DKP) (Fig. 6).

Nevertheless, analytical kinematic and dynamic
descriptions are not negligible. In addition to the multibody
approach, a new schematic method for kinematic analysis and
optimization is used. With respect to the modular structure of
parallel robots, the computation is divided into a sequence of
single steps according to the modular kinematic analysis of
planar linkages as described in the guideline ‘VDI-Richtlinie
2729’. This method is completed by a schematic procedure for
deriving the general transmission matrix. This procedure is

6 3 5 4

3

2

F
k

3

4

5

6

4 5 6

6 36 5 46 6 465 55 5 56

6

6 56

6 6 46 6 5 56 6 6 56

6 54 5 5

6 66

6 6 66

6 66 56 6 66 66

6 66 6 66

6 6

227



founded on the idea of constraint conditions, which fix the
geometry of single links and joints. By connecting all links, the
corresponding conditions are summarized in the transmission
matrix. The elements of the transmission matrix represent
partial derivatives between all geometrical parameters and the
coordinates of the joints thus forming a database with all
kinematic information about the parallel structure. This is the
starting point for optimization. There are different intentions
for the structure synthesis and optimization of parallel robots.
Especially, on the one hand a high velocity transmission, i.e.
the Jacobian matrix J, is essential. On the other hand a good
transmission of forces, i.e. G = J-T, is required. Both goals are
contradictory. Usually, all kinematic performance criteria
depend on the pose. In terms of significant structure criteria,
pose independent key figures have to be determined. The
approach for finding the optimal layout of a parallel structure
with a particular degree of freedom emerging from a given
application is as follows: First of all the application
requirements have to be represented by mathematical
performance criteria: The first criteria will be the workspace /
construction room ratio. The shape of the workspace of a
chosen structure is compared with simple geometrical bodies
like: sphere, ellipsoid, cuboid, cylinder, prism, pyramid and
torus for spatial structures. For plane structures rectangles,
triangles, circles and ellipses are taken. Other criteria
depending on the applications are for instance (Frindt, 2001,
Gosselin, 1998, Schönherr, 1998): transmission quality,
manipularibility, local dexterity and stiffness condition. The
sum of the different mathematical criteria mentioned above
multiplied (=assessed) with a weighting-factor represent the
needful degree of performance of the underlying application
requirements.

5 Robot control and information processing

5.1 Initial point and call for action

The promising possibilities of parallel structures cannot yield
profit until the problems of the mechanical structure, e.g.
singularities, collisions and the limited range of motion of the
passive joints, have been solved by the robot control. Up to
now there is no commercial robot control available fitting the
requirements for all kind of parallel robots. This means that
control functions of conventional robot control technology
must be combined with parallel robot specific allocative
functions (Hesselbach, Kusiek, 2000, Jansen, 1996).

The payload / robot mass ratio of parallel structures is even
higher compared to serial robots, where the influence of the
payload on the impedance of the robot is negligible. By use of
direct drives the influence of a variable payload cannot be
ignored. The adaptive control effort rises when parallel robot
specific coupling terms have to be regarded in a model-based
control and real-time requirements have to be fulfilled (Tsai,
1999, Sciavicco, Siciliano, 2000).

A survey of the Fraunhofer Institute of Production
Technology and Automation discovered faults in the operator

convenience of robot systems. Therefore further investigations
for a HMI supporting the operator have to be done. A motion
orientated robot programming language as well as visual aids
are required.

Considering the use of adaptronic components (see chapter
6) additional sensor and actuator functions have to be
implemented in the control and concatenate the corresponding
hardware with a special communication system.

5.2 Intentions and approaches

5.2.1 Machine-orientated control functions

In order to take full advantage of the inherent structural
possibilities of parallel robots new adapted machine-orientated
control functions have to be included in the robot control
architecture. One challenging task is the realization of efficient
workspace monitoring concepts allowing the robot to move
safely at arbitrary velocities within the whole workspace. The
workspace monitoring has to prevent singular positions,
collisions between structural elements, violation of passive
joint angles etc.
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Fig. 6: The robot control functionalities

In contrast to serial robots, singularities of the 2nd type
appear inside the workspace (Merlet, 2000). That means that
the determinant of the Jacobian matrix of the DKP vanishes. In
that case the robot obtains an additional degree of freedom and
the structure can become uncontrollable as soon as a force is
initiated to the platform and any further movement might
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destroy the robot. In addition, the range of the passive joints
must be taken into consideration. Thus a workspace survey
module must be able to check the motion of the robot in real-
time. The basis for monitoring the appearance of singularities is
Grassmanns Theory (Gosselin, Angeles, 1990). This requires
transformation equations of the DKP with reduced computing
time. However, the DKP of parallel structures opposite to serial
structures cannot be solved by an analytical way in general
(Tsai, 1999). Rather iterative numeric procedures are necessary,
which cannot guarantee numeric convergence or limited
computation time. By integrating additional sensors into the
passive joints, redundant information of the pose can be used
for analytical equations of the DKP and monitoring of the
passive joint states. Thus the moving into singularities can be
prevented by the control system (Fig. 6, Hesselbach, Kusiek,
2000).Under these circumstances big efforts in developing joint
integrated sensors have to be done. The sensor resolution has to
match the accuracy of the robot in the whole workspace. In
addition, the sensor information can be used for online
calibration of the robot. The development of compact sensors
for online monitoring is described in section 6.

Fig. 6 shows the structure of the robot control architecture
which includes specific parallel robot functionality. If the
parallel robot remains in a conflict situation, special strategies
are needed to prevent the robot from damage. Because of the
complex kinematic behavior this cannot be done by the
operator. Therefore a special algorithm has to be developed for
supporting the operator moving the robot out of the conflict
situation. The corresponding algorithms are embedded in the
blocks workspace monitoring and exeption handling. The
exeption handling routines provide functions to remove the
robot from inadmissible positions or to reach a safe starting
position after the robot stopped manually or automatically.

5.2.2 Parallel robot programming

The development of a parallel robot specific programming
language is divided into different tasks. Considering the
assembly and handling applications there is a need for
predefined motion commands for hybrid motion, i.e. force
and/or position controlled motions of the robot.

Fig. 7: Headlight assembly with SSrs

The basic idea of an automized generation of the robot
program is the decomposition of an assembly task in
standardized assembly functions like opening and closing of the
gripper, transfer motion or contact with the environment.
Therefore it is necessary to specify the relations of the parts to
be assembled in a standardized way.  The easiest way to
generate symbolic spatial relations is to interactively let the
design engineer model a virtual assembly of the product in the
CAD environment in order to specify appropriate features and
their suitable relations (Fig. 7). These symbolic spatial relations
can be used for the automatic calculation of possible assembly
plans and for an almost automated programming and execution
of the assembly process (Fig. 8).

By using the HIGH LEVEL ASSEMBLY PLANNING SYSTEM
HighLAP and a CAD description of the assembly components
sequence plans for the assembly strategies are provided. The
robot programming system has to map the assembly task into a
sequence of elemental robot operations automatically. In the
different task-oriented commands the necessary motion
oriented-commands are included.

Fig. 8: Assembly plan

Due to uncertainities in the workspace during the assembly
task operations the robot comes into contact with the
environment. These contact states need to be represented in so
called skill primitives. As mentioned above skill primitives can
be considered as a sophisticated interface between the robot
programming and the robot control and extend the known
compliance frame concepts of Mason, 1981. In order to
determine the robot motions, positions/orientations, velocities
and forces/torques have to be specified in terms of a
compliance frame matrix. Thus in case of a given assembly
specification the program code will be generated automatically
(Wahl, Thomas, 2001, Mosemann, Wahl, 2001).

The execution of automatically generated assembly
programs is one key for a prosperous application of robots in
industrial automation environment. In order to reach this goal a
convenient Graphical User Interface supporting a task-
orientated as well as a motion-orientated programming of the
robot is needed. The HMI based on ROBCAD will consists of
the following functions:
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� a TeachIn-box for the interactive handling of the robot,
� workspace visualization tools to support the operator,
� modeling and animation of  the robots the tools  and the

handling objects within the manufacturing cell,
� path planning tools with regard to the parallel kinematic

disadvantages and
� a real-time simulation of the robot programs.

5.2.3 Position and force control

Considering the application fields of the SFB 562, e.g. joining
process during assembly, position and force control concepts
have to be developed. As mentioned above these so-called
“compliant-motion” tasks could be presented in the compliance
frame formulation. That means that the task can be translated in
a positioning or force control problem in selected cartesian
orthogonal directions within a transient cartesian coordinate
system. The hybrid position/force control is perhaps the most
widely adopted strategy within the compliance frame
formalism. In this case controllers for position and force are
designed independently with the force controller implementing
a direct force control algorithm. As the compliance frame
evolves accordingly with the description of the desired task
selection matrices are used to bring the adequated controllers
into the control loop, that is, in each frame direction a specific
controller is chosen regarding the correct execution of position
or force commands.
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Fig. 9: Position and force control structure

These selection matrices, Si, are diagonal matrices with a 1
or a 0 on the diagonal entries corresponding to the axes of the
compliance frame and satisfy the equality, �Si  = I  where I is
the identity matrix. Usually, a manipulator control system
based on the position/force control approach has two feedback
loops for an independent control of position and force with the
actual positions and forces being measured (Fig. 9). One way to
proof stability in switched systems is by using Lyapunov
functions and to look if they -with the switching signal- lead to
equilibrium points of the systems.

The increasing computational power allows a centralized
controller concept. This concept is not only optimized for the

drive but also for the entire robot system. Supplementary,
additional sensors can be integrated easily. For these purposes
task-space methods are preferable. The equations of motions
are:

( ) ( , )T
x x g reibf J M x x C x x x f f�

�

� � � � ��� � � (1)

At the edge of the workspace the Jacobian matrix becomes
singular. Thus some elements of the Mx and Cx including the
inverse Jacobian matrix reach infinity values. To prevent
unexpected strong fluctuations of the impedance and enhance
the tracking behavior by compensating nonlinear dynamic
effects feed-forward and computed torque are necessary (Kock,
2001, Kock, Schumacher, 1998).

In section 5.1 the fact is mentioned that by the use of direct
drives the influence of the payload is not negligible. In order to
determine the mass parameters (incl. the payload) in an
adaptive control approach, it is worthwhile having linear
dynamic parameters in the dynamic equations of the robot, like
(Sciavicco, Siciliano, 2000):

( , , )Y x x x� �� � �� (2)

The structure-integrated adaptronic force sensors are used
for the measurement of the contact forces as well as for payload
estimation. The conventional force control based on the
compliance principle, with fast and stiff force measurement and
an inertial structure, cannot be used for parallel robots. The
high stiffness of the structure and the use of direct drives lead
to a system with low inertia. That means that the compliance of
the sensors is equivalent to the compliance of the structure.
Consequently new force control concepts have to consider this
fact.

5.2.4 Architecture of a real-time communication network

Various sophisticated commercial robot control systems have
been developed in the last 20 years. However these control
systems often lack openness and flexibility and the
implementation of new modules is complicated or impossible.
Therefore the long term goal of the SFB 562 is to develop an
own robot control for parallel robots. An object server
middleware (Fig. 10) is organizing the communication between
the allocative functions (Fig. 6), the controller and the bus.
Thus the different modules communicate only with one partner.
The communication between the modules and the object server
consists of objects with a standardized format, containing
messages, data, request, trigger signal, etc.. The interaction of
the modules via the object server has the benefit that in a
formal sense all modules are running autonomously
(Finkemeyer et al., 2001). Thus the great advantage is that
modules can be easily added or changed. The object server
system is implemented on QNX neutrino OS on a PC. The
realtime quality of the communication between processes can
only be achieved by using synchronous data transmission
without the object server as an intermediate station. This is
achieved by using shared memory.

The effectively used communication systems, e.g.
SERCOS and Profibus MC, provide the opportunity for
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changing desired and actual values between the control and up
to 16 servo drives. In these systems the nominal cycle time
depends on the amount of peripheral units. Considering parallel
robots with additional adaptronic elements, this bandwidth will
not fit our real-time requirements. This is the starting point for
the development of a new architecture for real-time
communication for parallel robots. This new approach is based
on the IEEE 1394 –FIREWIRETM – standard, with a nominal
cycle time of 125 �s, a transfer rate up to 400 Mbit/s, 63 user
and isochronous as well as asynchronous transfer. The
application of the IEEE 1394 in the field of industrial
automation demands an additional communication protocol,
namely the INDUSTRIAL AUTOMATION PROTOCOL (IAP) . The
integration of the IAP manages isochronous and asynchronous
transfer of data in the 125 �s cycle (Beckmann et al., 2001).
That means the IAP realizes the coupling of external sensors
and actuators via the FIREWIRE bus.
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The complete communication architecture is named
DARIOS = Distributed Architecture for a Real-time Industrial
Object Server (Fig. 10). Its characteristics offer following
advantages:

� A consistent protocol for the transmission of process
and parameter data within the robot system

� Free configuration of the data transfer for the
consideration of different priorities and time requests
of the processes

� Organization of the process and communication flow
in order to ensure an unobstructed data transfer

� Fulfilment of realtime requirements of the processes
through the use of shared memory and necessary
memory protection mechanisms

5.2.5 Analysis of  real-time systems modeled by UML

The complexity of the suggested modular control system
necessitates software methodology for a straight and cost-

efficient development of the whole robot control architecture.
The complete architecture is modeled by using the visual
notation UNIFIED MODELING LANGUAGE (UML). UML
provides both, a high grade of clearness and correctness. Thus
the semantic of the interactions of the mentioned modules, with
regard to the priorities of the processes, the processes
themselves and the data flow can be depicted in an easy way.
The time-based semantic is transformed into a TIMED
AUTOMATA SEMANTIC. For the validation of the developed
system the verification tools RHAPSODY and UPPAAL will be
used. In consideration of real-time requirements, deadlocks,
bugs, and conflict states several scenarios will be used to verify
and evaluate the functionality of the whole system (Firley et al.,
1999). In this case study we illustrated the feasibility of a
translation of UML-statecharts to timed automata. The
translation of the object aerver shows that timed automata are
an appropriate formalism to express behavior defined by UML-
statecharts.
This case study is part of an effort to bring the advantages of
formal methods to the application domain of real-time systems.
The aim is to use UML as a user interface that hides the
application of verification techniques.
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Fig. 11: Verification of the dynamic UML models

Fig. 11 shows the overall structure of the general approach.
Part of this approach is to transfer UML statecharts
automatically or (semi) automatically to timed automata.
Additionally we need a description language of requirements.
In Firley et al., 1999 UML sequence diagrams with timing
annotations are proposed and a translation to timed automata is
sketched. The model checking may then be performed by
UPPAAL. A result could be an error trace referring to timed
automata. Also this trace should be lifted to the UML level to
hide the underlying formalism.

6 Components

6.1 Initial point and call for action

In every system with accelerated masses and finite stiffness
mechanical vibrations occur. As well as the request for
increasing operating speeds and accelerations rises mechanical
vibrations attract the interests of robot engineers. The most
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important goal is to lower the amplitudes of the oscillations of
the structure in a short time.

The functional properties of mechanical systems such as
parallel robots are significantly determined by the joints within
the kinematic chains. Positioning accuracy depends on the
quality of the joints. Hence, hysteresis and backlash must be
prevented. Due to the high reaction forces and loads of the
joints there is a demand for high stiffness and payload.
However, present joint developments are not very helpful for
application in parallel robots. Available standard joints for such
purposes and with more than one degree of freedom are
developed for machine tools and not for robots. The
requirement on light parallel structures is inconsistent with the
existing components (Franke, 1999).

For monitoring the dependent joint states of the passive
joints of the robot and for an analytical real-time solution of the
DKP internal sensors are needed. Conventional sensor
technology will not fulfill the requirements, e.g. size, mass and
resolution. By using new technologies, such as micro-
technology, internal sensors have to be developed.

6.2 Intentions and approaches

6.2.1 The adaptronic approach = active vibration damping

In order to achieve an enlarged efficiency of parallel robots the
consequent use of lightweight components is needed, because
less moved masses lead to increased acceleration and velocity.
With respect to their framework structure the use of rods made
of carbon fibre materials is worthwhile for the design of link
elements. This leads to problems like vibrational sensitivity due
to low mass, tendency to buckling, and susceptibility to
damage. Many approaches to reduce the amount of vibrations
are known today. In addition to passive methods like reducing
the accelerated masses or the integration of additional dampers,
i.e. materials with high damping coefficients, active methods
become more and more important. However, in many
mechanical systems the possibilities of passive methods
reducing or transforming the vibrational energy into a different
type of energy come to a limit. In this case only additional
active/adaptive systems, which consist of combined actuators,
sensors and controllers, achieve a higher effectiveness on
influencing the eigenmodes and eigenvalues of the system.
Concerning the manufacturing technology, carbon fibre
reinforced polymers (CFRP) are built up from fibres and epoxy
resins to produce one material during the manufacturing
process. This is a unique chance for adaptive technologies to
embed multifunctional elements in load carrying structures in
the sense of integral design.

The term adaptronics designates a system and its
development process wherein all functional elements of a
conventional regulator circuit are existent and at least one
element is applied in multifunctional way. The conformity with
a regulator circuit guarantees that the structure shows
autonomic adaptive characteristics and can thus adapt itself to
different conditions. Thus adaptronics allows the
implementation of active elements made of multifunctional

material with virtual properties such as changing stiffness,
damping or mass distribution in real-time. In this way,
structural elements (i.e. a combination of links and active
elements, Fig. 13) can be developed which are not subject to
any deformations as a result of external forces and,
consequently, exhibit an apparently infinite stiffness. With this
approach it becomes possible to equip optimized mechanical
structural systems with structure-conforming integrated
piezoceramic actuators and sensors as well as adaptive control
systems offering real-time capability (Breitbach, 1997,
Hesselbach, Helm, 2000). The main goal of the adaptronic
approach intra the SFB 562 is to generate oscillations which are
directly opposed to the structure vibrations. This leads to a
compensation of the structure oscillations and a higher
accuracy at the end-effector (Fig. 12).
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Fig. 12: Oscillation at the end-effector

In the field of adaptronics many multifunctional materials,
such as piezoceramic fibers, patches, foils and stacks with
adaptive controllers, magnetostrictiva, shape memory alloys
and electrorheological fluids are developed. Functional means
that the material will preserve the same functional property
even when its volume is subdivided. Multifunctional means,
that these elements satisfy both, load-bearing and actuatoric /
sensoric tasks. Due to the fact that the piezoelectrical properties
are inverse, the multifunctional material can be used for
actuatoric as well as for sensoric tasks.  By using these
elements an internal force measurement for force control
purposes becomes possible.

Owing to their construction by rod elements, which are
poor in mass, parallel structures offer an ideal platform for an
active vibration reduction. Thus it is possible to realize parallel
robots with integrated active links based on multifunctional
materials. For first experiments a five joint planar robot with
two degrees of freedom as a test stand is used. The planar robot
consists of two cranks made of CFRP panels using carbon fibre
fabrics. The most important goal of this design is to achieve
high bending stiffness and light weight. Thus active elements
are integrated into the rods (Fig. 13, Sachau, 2001).
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Fig. 13:  Principle of the active rod
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The active element is a piezoceramic stack actuator with
one layer connected as a sensor. To prevent damage from the
active element caused by tensile loads, the active elements have
to be prestressed by a carbon fibre belt. By changing the length
of the internal rod and the prestressing belt, this kind of active
rod can be used for different types of parallel robots. By using
direct drives the main goal of this demonstrator is to reach an
acceleration of 10-20 g at the end-effector. In order to influence
the impedance at the end-effector the right position of the
actuators and sensors is a very important factor. Considering
the classification of the structures (section 4) standardized
methods for placing the adaptronic elements into the structure
have to be developed. In addition to the actuators and the
sensors the controller is an inherent part of an adaptronic
system. Therefore three different controller concepts will be
investigated: robust, model-based and adaptive controller.
Supplementary, an observer for the determination of the
internal states can be added to the control system.

6.2.2 Development of passive joints

Nevertheless, the accuracy of parallel robots depends directly
on the quality of the passive joints. Joints for parallel kinematic
machines and robots need to fulfill a specific set of
requirements.
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Fig. 14: Relevant joints requirements

The knowledge and documentation of these requirements
are conditions for a reproducible design of new, well-adapted
joints. Fig. 14 shows relevant requirements for joints and their
mutual constructive and functional relationships. In order to
fulfill this demand all joints should be designed in a lightweight
way. On the other hand the joints have to accomplish high
stiffness requirements. In addition the bearing slackness of the
joints has to be minimized by preloading the components. In

contrast to serial machines, parallel robots contain passive
joints with more than one degree of freedom. These
requirements ask for new design solutions. The use of design
catalogues, which enable a comparison of available solutions,
leads to a systematically development of new joints, e.g. with
regard to shape variations and connections. Starting from
existing design catalogues a selection of joint prototypes will
be designed (Franke et al., 1999). In tribological tests the joint
characteristics will be determined. According to the small
slewing angles of the passive joints tribological problems in
hydrodynamical bearings may arise. By using PVD-coated
materials this problem could be resolved.

Intra the SFB a new HEXA parallel robot with 6 dof as a
test stand will be developed. This robot requires joints with 2 or
3 dof. Fig. 15 shows modular joints for this new prototype. The
angle ranges are 360° for the first axis, 270° for the second axis
and 360° for the third axis. Particularly the value for the first
axis may crucially depend on the platform or the arm to which
the joint is mounted. E.g. used with the HEXA-platform the
angle range for the first axis is 250°. The load capacity is 2.000
N and the FEM-calculated stiffness averages 32 N/�m for the
joint with 2 DOF and 23 N/�m for the joint with 3 DOF. The
weight is 202 g for the joint with 2 DOF and 290 g for the joint
with 3 DOF.

Fig. 15: Modular joints with 2 or 3 dof with
needle roller bearings

6.2.3 Joint integrated micro senors

Nevertheless the small dimensions of the passive joints lead to
problems with the integration of the sensors. By integrating the
sensors into the joints further disturbance effects occur, which
are harmful to the measurement quality: high accelerations,
unsteady temperature, lubricant and dirt particle. In addition to
the limited construction room these requirements must be
fulfilled by the sensors. By means of micro-technology the
fabrication of sensors with a high rate of miniaturization
becomes possible. Utilizing UV-depth lithography enables high
aspect ratio microcoil fabrication with of 5, 10 and 20 �m wide
conductors and up to 100 windings (Fig. 17 (Ohnmacht et al.,
2000, Seidemann, Büttgenbach, 2000). The measuring principle
of the angular position is based on inductive scanning of a disk
which carries a microscale with circular arranged grating
structures consisting of alternative sections of different material
properties.
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Fig. 16:  Double layer microcoil with integrated
NiFe-core and Cu-shielding.

These microcoils act as a scanning unit within the sensor.
The mutual inductance is realized by linear or rotational
micro-scales. Both types are modeled as incremental as well
as encoded scales. The advantage of the encoded scales is the
possibility of an absolute measurement.

Fig. 17: Microcoils (Seidemann, Büttgenbach, 2000)

7 Conclusions

The integration of adaptronic components with special adaptive
control concepts is a promising effective way to make robots
both, more accurate and faster and consequently more
productive (Fig. 18).
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Fig. 18: Performance improvement

Only after having removed the fundamental disadvantages,
an expansion of parallel robots to many applications in the field
of handling and assembly is possible. Within the SFB 562 the
basic research activities for the development of parallel robots
are structured into three project fields, namely modeling,
control and information technology and new components. In

doing so, the interdisciplinary knowledge of mechanical and
electrical as well as computer science will be synergetically
combined for reaching one goal: The structural and methodical
development of parallel robots for given applications. Thereby
an important point is modularity not only with regard to the
structure and its components but also in consideration of the
control and information technology including the kinematic and
dynamic equations.
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Abstract: This paper proposes a practical course in the 
education in parallel mechanism systems. The key issue of 
the set-up is that the students do not execute predefined 
projects of a yearly course but rather define and execute 
small, not previously conducted research or design projects 
in a larger innovative project. This is believed to be highly 
motivating for the students. However it also makes great 
demands on students and supervisors. Students are to define 
their own assignment and solve a problem with no known 
right-or-wrong answer, while supervisors must restrain 
themselves, and must judge work of different nature. 
Although many subjects qualify for being taught in this 
format, it is particularly suited for education in parallel 
mechanisms due to the many aspects involved in the design of 
these systems. 
 
 
1 Introduction 
 
With good reason, parallel mechanisms and manipulators 
receive increasing attention, thanks to their specific qualities 
and the wide variety of architectures and applications (see for 
instance the websites listed in the reference section).  

This paper presents a proposal for a practical course in 
parallel mechanisms which aims to let students discover the 
variety of architectures and applications and to allow them to 
gain experience in the analysis and design of parallel 
mechanism systems. In addition, this course aims to bridge 
the gap between regular courses and the graduation project 
by incorporating a fair amount of self-reliance. To achieve 
these goals, a practical course is proposed in which students 
do not execute predefined yearly repetitive projects but rather 
define and execute small, not previously conducted research 
or design projects within the framework of a larger, 
innovative project. Thus, two layers can be distinguished: a 

first one in which students complete their individual projects, 
and a second where their results add up to the progress of the 
overall project. 

The course is intended to be self-developing in two 
senses. Firstly, this term emphasizes the responsibility of the 
students to acquire the appropriate knowledge. Secondly, it 
indicates that the content of the course is not a priori 
determined and that the students have a strong influence on 
their own education as well as on the direction of the 
development of the overall project. 

The course is intended for students at early graduate 
level. Students will acquaint themselves with defining 
innovative projects within the larger framework of the overall 
goal, coping with responsibility for the project, and planning 
of their project, as well as acquiring knowledge on parallel 
mechanisms in general and at least one aspect of these in 
particular.  
 The remainder of this short paper will elucidate the 
intended set-up of the practical course, its supervision, the 
expectations, and provide an example which is to start 
running this year at Delft University of Technology.  
  
2 Self-developing practical course 
 
The subject of the practical course concerns parallel 
mechanisms, much else is not specified. An overall project 
goal will function as point of departure. Typically, this goal 
will concern an innovative project, the completion of which 
is evidently not attainable within the allotted time of the 
student's individual project.  

The subsequent steps to be taken by the student are the 
following: (1) acquire background knowledge, (2) acquire 
project-specific knowledge, (3) formulate a well-defined 
problem statement for their own project considering allotted 
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time, (4) execute the project, (5) write a report, and (6) give a 
presentation. These steps will be discussed next. 
(1) Background knowledge concerns general information on 

parallel mechanisms and manipulators, from books and 
internet, in order to acquire a general understanding of 
the subject. The student has the responsibility to locate 
and study appropriate material. Based on this 
information, students can select an aspect of their 
interest. Aspects of interest may include kinematics, 
dynamics, design, control, evaluation, psychophysical 
experiments, etc.  

(2) Project-specific knowledge concerning the selected 
aspect of interest is needed as a preparation for the 
problem definition, and may include studying the reports 
written by previous students in the project. 

(3) Formulating a problem statement is part of the student's 
effort. No prescribed assignments are available. The 
student may include preference in the consideration, but 
may also consider the progress of the project as a whole. 
The student will have to estimate whether the amount of 
work and the profundity of the work are at the right 
level. The allotted time should be taken into account.  

(4) The self-determined assignment should be carried out 
with sufficient depth. Although the problem statement 
should be formulated accurately and agreed upon by the 
supervisor, it will generally prove necessary during the 
execution of the project to adjust the problem statement, 
for instance when it turns out to be too ambitious. 

(5) A brief report must be made in the form of a two-page 
paper (including an introduction, background 
information, a problem definition, a main section, and a 
conclusion) and appendices (sufficient for successors to 
follow up on the work done, possibly including 
computer program code, technical drawings, design 
calculations, raw measurement data, etc). 

(6) A ten to fifteen minute oral presentation on a mini-
symposium concludes the project. This gives the student 
the opportunity to present their problem definition and 
discuss their findings with fellow students. 

Thus, the students are self-developing in that they bear a 
great part of the responsibility for their project. They have a 
major say in the subject of their assignment as well as in the 
rigor of the execution. The course as a whole is self-
developing in that the summation of individual student 
projects determines the direction of progress and adds up to 
the completion of the overall project. Starting the course, the 
image of the final outcome is unclear. It is felt that this is 
positively challenging for the students, and learns them to 
cope with uncertainty, as opposed to the process of taking 
courses and doing exams.  

The course is additional to theoretical courses in the sense 
that students do not increase their proficiency in all the fields 
associated with parallel mechanisms. Furthermore, the course 
provides the opportunity not only to learn about state-of-the-
art parallel mechanisms but also to improve existing designs 
or conceive new ones. A student who decides to investigate 
the dynamics of a new mechanical design may not improve 

on control implementation skills. However, the students will 
demonstrate their capability to specialize and to make their 
findings useful to fellow students who specialized in another 
aspect of the project. Inversely, they will learn from their 
fellow students' efforts.  

Due to the wide field of aspects associated particularly to 
the design of parallel mechanisms, the format of the proposed 
course allows considerable transfer of knowledge and 
development of skills in limited time.  
 
3 Supervision 
 
It may seem from the above that supervision is not needed. 
This is neither true nor is it the intention of the course set-up. 
Indeed, also the supervisors will need to adapt. The course is 
not a collection of predefined projects which are carried 
yearly, nor is it to be regarded as a long term project broken 
down into small pieces of research and design which are 
carried out by a sequence of students. Both of these forms 
lack the prime feature of the proposed set-up, namely the 
responsibility of the students for their own project. It is the 
task of the supervisor to provide great latitude in project 
definition, yet to safeguard the quality level of the 
assignment.  
 At the start of each individual student project supervisors 
will check the initial problem statement on sufficient level, 
but must otherwise be reserved. Students should experience 
whether their problem statement suits the project term. 
Generally, after one third of the project term a workable 
problem statement should be defined.  
 

 Student Educator 
Adv. Personal interpretation 

of assignment  
Contribute to overall 
project. 
Preparation for 
graduation project. 

Motivated students. 
Variety of work. 

Disadv. No off-the-shelf 
assignment. 
Responsibility for own 
project. 

Balance between 
guide and let go. 
Close individual 
supervision on a 
variety of fields. 
Comparative marking 
difficult. 

 
Table 1 Overview of some advantages and disadvantages 
of the self-developing course format. 
 
4 Expectations 
 
The increased responsibility and self-reliance are key features 
of the self-developing course. It is expected to stimulate 
motivation and therewith the transfer of knowledge. The fact 
that the students determine their own project is expected to 
result in high commitment. The perspective of the overall 
goal is expected to increase the perceived significance of the 
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student’s individual project. Although no explicit element of 
competition is included, comparison of problem formulations 
and project results may incorporate a similar effect.  

The students generally are interested in achieving evident 
result of their work, in this case their individual efforts as 
well as their combined work. It is therefore expected that the 
overall project will develop evenly. A missing link for the 
grand apparatus to work may well be regarded by a student as 
an opportunity to play an important role. Thus, apart from 
personal preference, factors such as expected impact may 
affect the choice of problem definition.  

It will probably not be difficult to find new student 
projects in the framework of the overall project. Probably the 
greater challenge will be to define problem definitions that 
give satisfactory results within the project term. It is expected 
that a project term, which is the equivalent of six full-time 
weeks, is appropriate.  

A summary of some advantages and disadvantages for 
student and educator respectively is given in table 1. 
 
5 Example: master-slave system for microsurgery 
 
Let us assume that the overall goal of the project is to 
develop a master-slave system for microsurgery. Such a 
project would include the design of a micromanipulator, a 
control device, and a control system. Furthermore, the 
human-machine evaluation and investigation of human 
psychophysics are needed to arrive at an optimal system. The 

field of application, surgery, places special demands on the 
design. The delicacy of the target object (tissue) may lead to 
the desire to provide the operator (surgeon) with force 
feedback. This requires sensors and actuators in both the 
micromanipulator (slave) and the master device, which in 
turn leads to special demands on the design of master and 
slave units. The master unit, for instance, should have high 
bandwidth to make a hard object in the micromanipulator feel 
hard to the operator. The micromanipulator on the other 
hand, may have to be precise but need not be able to generate 
large forces. The way the operator handles the different modi 
of feedback information is also an interesting aspect. The 
fundamental consideration of the design specifications and 
their dependency on the field of application is an essential 
part of each student's project. 
 A student may be interested in the mechanical design of a 
master unit. This student is supposed to come across a 
number of reports on this subject in literature (e.g. Birglen, 
2002) and will find that parallel mechanisms in various forms 
are particularly suited to serve as (haptic) control interfaces, 
e.g. Melchiorri and Vassura (2001), Gallina and Rosati 
(2002), Williams and Gallina (2001). The student may be 
triggered by the problem of  limited moment feedback in the 
design by Williams and Gallina, and may propose an 
alternative solution, which features full moment feedback, 
low friction, and results in straight-forward kinematics and 
control (figure 1).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        (a)                (b)      (c) 
 
Figure 1 Design proposal for haptic input device: (a) schematic overview with exaggerated dimensions, (b) possible
embodiment of central disk, partially in cross-sectional view, (c) enlarged view of roller. 
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In the proposed design, the cable system consists of three 
legs. The centerline of each leg passes through the center of a 
disk. The cable of one leg is wrapped around a pulley fixed to 
the disk, the cables of the other two legs are wrapped around 
rollers which roll on the inside of the disk circumference. The 
cables of the legs are fixed to ground and to the motors via 
pulleys. In the leg connected to the disk, each free end of the 
cable is wrapped around a pulley, each fixed to a separate 
motor (motor 1 and motor 2). In the other legs, the free ends 
of the cable are wrapped around pulleys, one of which is 
fixed to ground while the other is connected to a motor 
(motor 3, and motor 4, respectively). When the pulleys 
within each leg are of equal radius, the kinematics are the 
same as in a system where three cables are connected to a 
moving point via small bushes near the motors, as in 
Williams (2001). However, the fact that two motors are 
present in one leg allows rotation of the disk or the 
application of a moment to the disk without changing the 
position of the disk by simply giving opposite signals to 
motors 1 and 2.  
 The student may now decide, for instance, to optimize the 
design and elaborate until the phase of technical drawings, or 
perform kinematic and static analysis based on the schematic 
representation of the diagram, depending on preference and 
other considerations. It is also possible that several students 
work on the different aspects, such as the ones mentioned or 
other ones such as the flexibility of the wires, dynamic 
modeling, possibly including friction, etc.  
 Another student may find the design by Canfield et al. 
(2001) in literature and become interested in the application 
of compliant parallel mechanisms in the micromanipulator. 
This student will probably start with a type synthesis study, 
and, time permitting, proceed with dimensional design or 
pass this on to a subsequent student. Thus, the field of 
compliant mechanisms (e.g. Howell, 2001) is included in the 
course.  
 
6 Conclusion 
 
This short paper presented a proposal for a practical "self-
developing" course in parallel mechanisms by letting 
students define their own project within the framework of a 
general overall goal. The course is self-developing in the 
sense that it emphasizes the responsibility of the students, 
and that it indicates that the students have a strong influence 
on their own education as well as on the direction of the 
development of the overall project. This approach aims to 
combine a broad perspective with concrete achievement, and 
therewith to increase students' awareness and enthusiasm for 
the subject of parallel mechanisms. The overall goal 
formulation provides sufficient latitude to allow the students 
to direct the course of the development. The students bear 
partial responsibility for the problem formulation and the 
depth of their work. Due to the variety of aspects associated 
particularly to the design of parallel mechanisms, the format 
of the proposed course allows considerable transfer of 
knowledge and development of skills in limited time. The 

approach is illustrated by an example that is to start shortly at 
Delft University of Technology: the design of a master-slave 
system for microsurgery. 
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Abstract: In this paper a recent research project of the Cana-
dian Space Agency in the field of satellite servicing is de-
scribed. In particular, the hardware-in-the-loop simulation of
a rendezvous-docking operation of a chaser and target satellite
is targeted. The satellites and the controller will be modeled in
software using Symofros, RT-Lab and Matlab/Simulink. A physi-
cal docking mechanism included in the loop will then be driven,
depending on the satellites’ relative motion, in a first phase of
the project, by a serial manipulator and, in a second phase, by
a parallel platform and a rail-mounted base. This project un-
derlines the growing number of industry related applications for
parallel platforms.

1 Introduction

Satellite servicing capabilities render one key element for a sub-
stantial reduction in space system acquisition, launch and op-
erations costs. In this setting the U.S. Air Force for instance
targets within their Orbital Express Space Operations Architec-
ture / ASTRO Program

�

to develop and demonstrate autonomous
techniques for on-orbit re-supply, upgrading, refueling and re-
configuration of satellites. This and other similar programs aim
not only to extend the life span but also to enable the capture
and rescue of defective satellites as currently also investigated
by the German Aerospace Center (DLR). The Japanese space
agency (NASDA) is also very active in this field. Their ETS-
7 spacecraft was launched on November 28, 1997. It is com-

�

www.darpa.mil/tto/PROGRAMS/astro.html

posed of a chaser satellite and a target satellite used to carry
out experiments to confirm the basic technologies. In Canada,
MD Robotics (MDR) is looking to the area of satellite servicing
since a few years. They have already developed an intelligent
vision systems (ORPE) and an end-effector for satellite servic-
ing for CSA. They have also developed unmanned on-orbit op-
erations capabilities through the Intelligent Interactive Remote
Operations (IIRO) project with CSA participation.

As common to all space applications all tasks and proce-
dures related to satellite docking require to be verified on earth
prior to the execution in space. As the design and functionality of
the actual docking mechanism, i.e., the satellite’s end-effector, is
crucial for the success or failure of the docking most reliable test
facilities are needed. As an example, the state-of-the-art end-
effector developed by MDR with its test-bed is shown in Fig-
ure 1. In this setup, the end-effector is mounted on a driven car-
riage. This carriage can be moved at various approach speeds in
order to emulate the motion of the arm as the chasing spacecraft
approaches the target spacecraft. On the other hand, the target
spacecraft is floating on air-bearing pads, allowing for axial and
lateral translation, and yaw rotation.

The rendezvous and docking operation test system
(RDOTS) of NASDA is shown in Figure 2. This nine degrees-
of-freedom system consists of a six degrees-of-freedom paral-
lel platform and a rail-mounted chaser base with two additional
degrees-of-freedom. With this system dynamic closed loop tests
can be performed by attaching real sensors on a full-scale mock-
up of the docking interfaces and feeding back the sensed data to
the computers and software.
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Figure 1: End-effector and test-bed developed by MD Robotics
for the Canadian Space Agency

Figure 2: Rendezvous and docking operation test system
(NASDA)

To allow for a most reliable docking simulation CSA targets
in this project the utilization of hardware-in-the-loop simulation
(HLS). Hereby, the satellites and their controller will be mod-
eled in detail using Symofros (L’Archevêque et al. 2000) and the
Matlab/Simulink environment. Since the modeling of the con-
tact dynamics of the docking mechanism is very complex and
strongly dependent on the contact parameter identification, real
hardware will be included in the loop instead.

This concept was already successfully applied at CSA to
verify insertion and extraction tasks of the Special Purpose Dex-
trous Manipulator as described in the next section. For the dock-
ing simulation the same serial robot will be used in a first phase
of the project to perform this operation. After a verification of
the overall concept with the SMT robot a parallel platform with

a higher bandwidth will be used to perform the docking of the
two spacecrafts with higher fidelity.

2 The STVF concept

As a partner in the International Space Station (ISS), Canada is
responsible for the verification of all tasks involving the Special
Purpose Dextrous Manipulator (SPDM) and its task verification
facility, known as the SPDM Task Verification Facility (STVF)
(Piedbœuf et al. 1999). The STVF Manipulator Test-bed (SMT),
as shown in Figure 3, is used to refine the analysis of the contact
portion of the task. It is a hardware-in-the-loop simulator con-
sisting in a rigid robot with its control, a simulation of the Space
Station Remote Manipulator Systems and the SPDM dynamics
and a visualisation engine. An operator controls the motion of
SPDM through a simulation engine which generates the endpoint
motion of the SPDM. This commanded trajectory is then used as
a setpoint for the robot controller which ensures that the robot
endpoint follows the desired trajectory of the SPDM.

The contact forces are measured using force/moment sen-
sors and fed back into the simulator to allow the dynamic sim-
ulation engine to react to external contact forces. This concept
is very flexible since it can accommodate vibration of the space
robot base or other phenomena. It can also be used to represent
different space robots. The main difficulty with the HLS or, in
general, with any master-slave type system with contact, is the
trade-off between stability of the control loop and good perfor-
mance. The control of robotic systems in contact has been the
subject of research for several years. The HLS problem is a little
different from the force-position control problem: the force to
be applied is not known, it is the result of the hardware contact.
In addition, for verification purposes, the ground robot controller
cannot stabilize a space robot operation that is unstable in the
reference scenario. Nor can it destabilize a stable operation. The
performance of the HLS is measured in terms of dynamic equiv-
alence to a reference dynamic system.

The ground robot control synthesis is of prime importance
in the HLS concept. Since the idea is to replicate the dynamics
of the space robot with the ground robot performing the con-
tact task, the control algorithm shall be such that the controlled
ground robot is transparent in the frequency band of interest for
the analysis required. Two different control approaches can be
applied. An intuitive approach consists of using the simulator to
replicate the behaviour of the reference system subjected to in-
put commands and contact loads, and to feed the ground robot
with a reference position to track. Another approach consists
of forcing the ground robot to behave like the simulated space
robot by commanding its Cartesian acceleration. Cartesian po-
sition/velocity feedback is used in addition as a corrector to im-
prove the system response within the bandwidth of interest. The
behaviour of the ground robot above this bandwidth is solely dic-
tated by the open-loop performance linked to the knowledge of
the system parameters. This gives good performance and good
stability. However, it requires a stiff robot with high tracking ac-
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curacy, a good torque controller and the ability to implement or
access the robot controller at the lowest level to achieve a fast
sampling time. To avoid exciting any higher, neglected dynam-
ics in the ground robot, the acceleration command from the space
robot simulator needs to be properly filtered.

The emulation of a space robot using a ground robot is done
by ensuring that the ground robot extremity follows exactly the
space robot extremity given by the simulation. From a dynamics
point of view, we can see it as forcing a real robot to follow a
virtual one. In some sense, it is similar to a master-slave control
in which the master is a simulator.

The details of the controller design can be found in Aghili
and Piedbœuf (2000). The base of the controller formulation is
the application of constraints on the ground robot so it will follow
the space robot. In dynamics, constraints are used to connect two
parts of a system to close a kinematic loop. In our case, we put a
constraint between the real robot and the virtual space robot. Us-
ing the Lagrange’s multipliers approach, we obtain a controller
that force the ground robot to follow the space robot. This con-
troller ensures that the ground robot has the same acceleration as
the space robot. Therefore, we do not control directly the posi-

tion as proposed in other approaches but we use the acceleration.
The controller is a model based Cartesian linearisation with ac-
celeration input. To avoid the inevitable drift, we are adding a
PD control on the Cartesian position and velocity. This is a com-
plete analogy to the Baumgarte stabilisation used in constraint
dynamical systems. Figure 4 illustrates this controller.
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3 The docking simulation

3.1 Docking simulation using the SMT robot

In the first part of the project, the SMT robot will be used to con-
duct an HLS simulation of a docking operation using the MDR
end-effector. The MDR docking simulator and Symofros will be
used as a basis to build the simulator of a chasing and target satel-
lites. The end-effector will be mounted on the chasing satellite
using a compliance mechanism that will emulate the elasticity
of a robot arm. Since MDR has already performed studies with
a similar model using their contact dynamics toolkit it is also
targeted to identify the contact parameters to enable a pure sim-
ulation environment. For the experiment the simulator will be
used to drive the SMT robot in HLS mode. The contact forces
and moments will be measured with a force plate and applied as
external perturbations to the satellites. Only the relative motion
of the two satellites will be represent by the robot. Another ex-
periment is planned where the end-effector will be installed on a
manipulator mounted on the spacecraft.

3.2 Docking simulation using a parallel platform

In space robotics serial manipulators are widely used to perform
many different tasks. There advantage is, among others, the large
workspace. Significant drawbacks are the restriction on the po-
sition accuracy, payload and, most importantly, the small band-
width, which is critical for HLS. The counterpart for these struc-
tures are parallel mechanisms. Here, the system forms one or
more closed loops. Due to the loop-closing condition the result-
ing motion is constrained, allowing the generation of complex
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transfer functions. Parallel platforms consists usually of a mov-
ing body (the platform) connected to a base via six legs, each leg
being hinged at the base and the platform by a passive spherical
joint. In between an active linear joint is mounted. Stewart and
Gough were the first to propose to employ this structure to gen-
erate arbitrary rigid-body motion. Today, Stewart-Gough plat-
forms are used in many fields of engineering, such as physical
flight and vehicle simulators, robotics, machine tools, etc. The
topology of parallel mechanisms allows for very accurate posi-
tioning, high payloads and yields a high bandwidth.

In this project, it is proposed to build or buy a COTS parallel
platform that will be mounted on rails to increase its workspace.
Since the platform will be used to develop advanced control
schemes and for R&D work, it will need to be very well in-
strumented. Symofros will be used to build the model of the
platform. This model will be needed to develop an advanced
model-based real-time controller within the Matlab/Simulink en-
vironment that will be used to perform hardware-in-the-loopsim-
ulation. The HLS capability developed for serial manipulators
during the STVF project, see Section 2, will be ported to paral-
lel platforms using the same computer architecture than for the
STVF project.

A main feature of the underlying concept is that the same
inputs and outputs are used for both the real hardware and the
simulation model. Hence, the user can readily switch between
the two. It is thus possible to develop in a first step the necessary
control schemes, monitoring and safety systems, state machines,
etc. When the system is fully tested in simulation, in a second
step, the same Simulink diagram can be distributed and compiled
by a simple click of the mouse using RT-LAB

�

and run on a
cluster of computers in real-time, driving the real hardware. This
approach supports fully the concept of rapid prototyping and the
testing of the final system is easily possible. It is also well suited
for multi-users work. Newly developed kinematics and dynamics
identification capabilities for Symofros will be used to identify
the required model parameters.

The development and verification of hardware-in-the-loop
capabilities will be done progressively using the following test
cases: (a) Free motion test; (b) Constrained motion test; (c) Com-
pliant contact test; (d) Peg on a surface test; (e) Peg in hole test;
(f) Docking using MDR End-Effector.

The final testing of this HLS facility using parallel platforms
will be done using the end-effector built by MD Robotics. This
end-effector, weighing 4.6 kg, has already been tested on the test-
bed of Figure 1 in MD Robotics facilities for approach velocities
ranging from 10 to 65 mm/s. Although this test-bed is very good
for preliminary testing, a facility to accommodate the relative
six degrees-of-freedom motion of the two spacecrafts would in-
crease the reliability of the results. The HLS setup proposed in
this paper, using a parallel platform, should fulfill this objective.

Finally, since the architecture of Symofros and Mat-
lab/Simulink described above will be used in the course of

�
www.opal-rt.com

this project, any future collaboration with external partners that
would be interested in the use of the platform will be easily pos-
sible.
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Parallel Robot Projects at Ohio University 
 
1.  GPS/IMU Calibration Platform 
 

 
 

The Department of Mechanical Engineering and the Avionics Engineering Center at Ohio 
University have developed an electromechanical system for the calibration of an inertial measurement 
unit (IMU) using global positioning system (GPS) antennas.  The GPS antennas and IMU are mounted 
to a common platform to be oriented in the angular roll, pitch, and yaw motions.  Vertical motion is also 
included to test the systems in a vibrational manner.  A four-dof system based on the parallel Carpal 
Wrist (from Virginia Tech, in turn from NASA Langley Research Center’s double-octahedral variable 
geometry truss) is used; the carpal wrist has three linear actuators and the entire system rotates on a 
turntable.  High-accuracy positioning is not required from the platform since the GPS technology 
provides absolute positioning for the IMU calibration process. 
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2.  6-PSU Platform Manipulator 
 

 
 

 
 

The Department of Mechanical Engineering at Ohio University has designed, constructed, and 
controlled a new 6-dof in-parallel-actuated platform, a combination and modification of existing 
designs.  The 6-PSU platform consists of 6 legs with a prismatic joint, spherical joint, and universal joint 
connecting links in each leg which move the platform in the six Cartesian freedoms with respect to the 
base.  The prismatic joint is actuated while the other two joints in each leg are passive.  The six 
prismatic joints move vertically with respect to the base, which appears to be a big improvement over 
the standard Gough/Stewart platform.  The base and moving platform joint locations are on concentric 
circles, which appears to have dexterity advantages over same-circle joint locations. 
 Our inspiration for this project comes from the Sandia Paradex, Merlet and Gosselin, Stoughton, 
Kozlowski, Wang et al., and Bonev and Ryu. 
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3.  Pneumatic planar 3-RPR Robot 
 

 
 

 
 

A planar three degree-of-freedom (dof) in-parallel-actuated manipulator has been designed, 
constructed, and controlled at Ohio University.  The symmetric manipulator is composed of three 
identical legs connecting the fixed base to the end-effector triangle (see the figures).  Each leg is of RPR 
design, with two passive revolute joints and an active prismatic joint in-between.  Each prismatic joint is 
an actively controlled pneumatic cylinder.  Using real-time closed-loop feedback control for each 
actuator length independently, we developed inverse pose and resolved-rate control for this manipulator.  
The objective of this work is to implement in hardware this 3-RPR manipulator design and to evaluate 
parallel manipulator control using pneumatics.  This type of manipulator can be used for general tasks 
such as assembly and trajectory following.  Since the workspace is smaller than an equivalent serial 
robot, we have considered workspace determination and design for this manipulator.  
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4.  8-dof spatial Cable-Suspended Haptic Interface (CSHI) 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
An 8-dof cable-suspended haptic interface (CSHI) has been designed and built at Ohio 

University.  The goal is to create an input/output device to provide six-degree-of-freedom (dof) wrench 
(force and moment) feedback to a human operator in virtual reality or remote applications.  Compared to 
commercially-available haptic interfaces for virtual reality applications, the present concept is striving 
for lighter, safer, crisper, more dexterous, and more economical operation.  The first virtual environment 
programmed includes 8 one-eighth spheres with linear stiffness located at each corner of the frame, as 
shown above. 
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5.  4-dof planar Cable-Direct-Driven Robot (CDDR) 
 

 
 

We have simulated the dynamics and control of a planar, translational cable-direct-driven robot 
(CDDR).  The motivation behind this work is to improve the serious cable interference problem with 
existing CDDRs and to avoid configurations where negative cable tensions are required to exert general 
forces on the environment and during dynamic motions.  Generally for CDDRs the commanded 
rotations are more demanding than commanded translations in terms of slack cable conditions.  
Therefore we provide a translational CDDR whose end-effector may be fitted with a traditional serial 
wrist mechanism to provide the rotational freedoms (assuming proper design to resist the rotational 
moments).  We have simulated examples to demonstrate control including feedback linearization of the 
4-cable CDDR (with one degree of actuation redundancy) performing a Cartesian task.  An on-line 
dynamic minimum torque estimation algorithm has been developed to ensure all cable tensions remain 
positive for all motion; otherwise slack cables can result from CDDR dynamics and control is lost.  We 
have built a planar 4-dof CDDR for experimental verification of our theoretical and simulation results. 
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6.  Spherically-Actuated platform Manipulators (SAM) 
 

 
 

A novel 6-dof platform manipulator has been developed at Ohio University, actuated by two 
base-mounted spherical actuators.  The moving platform is connected to the fixed base by two identical 
SRU serial chain legs.  The S-joint is active, and the remaining two joints in each chain are passive.  An 
analytical solution has been developed for the inverse pose kinematics problem, a semi-analytical 
solution is used for the rate kinematics problems, and the numerical Newton-Raphson technique has 
been employed to solve the forward pose problem.  Unfortunately, the passive joint variables cannot be 
ignored in the kinematics solutions as they can for the Gough/Stewart platform.  Experimental hardware 
has been built, using two Rosheim Omni-Wrists from NASA Langley Research Center as the spherical 
actuators. 

An improved SAM is currently under development, wherein the serial chains are two identical 
SPU serial chain legs; that is, the passive revolute (R) joints will be replaced with passive prismatic (P) 
joints, see the CAD concept below.  This change allows better singularity avoidance and better 
workspace. 
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Abstract: This paper is intended to draw attention to the poten-
tial of static redundancy in parallel manipulators and the need to
develop effective redundnacy resolution schemes specially suited
for application in such robot manipulators. A few simple redun-
dancy resolution schemes are discussed and compared with re-
spect to their performance through an example. Minimization
of a high-index norm is observed to yield a good solution for
generic requirement of actuator force optimization. More stud-
ies may reveal suitable schemes for different kinds of constraints.

1 Introduction

Parallel-actuated robot manipulators exhibit a duality and reci-
procity against conventional serial manipulators, as detailed in a
classic paper by Waldron and Hunt (1991). From the works on
singularities of parallel manipulators, notably by Merlet (1989)
and Gosselin and Angeles (1990), we find that the predominant
kind of singularities in these manipulators are in force domain,
rather than motion domain. Such singularities, hereafter referred
to force singularities, manifest themselves in the inability of the
actuators to sustain arbitrary loads in certain configurations and
the resulting uncontrollability of the system.

As kinematic redundancy is found useful in avoiding kine-
matic singularity of serial manipulators, the natural kind of re-
dundancy to avoid force singularity is force redundancy, with
additional in-parallel supports, that has been analyzed as type III
redundancy by Lee and Kim (1994). An elaborate treatment of
the role of redundancy in parallel manipulators can be found in
Merlet (1996). Dasgupta and Mruthyunjaya (1998a) showed
that, through force redundancy, the singularities of parallel ma-
nipulators are not only avoided, but also reduced. This makes
it a very attractive option for tackling the singularity problem in
parallel manipulators.

However, it is important to devise effective redundancy res-

∗Permanent address: IIT Kanpur, India. (dasgupta@iitk.ac.in)

olution schemes to exploit the advantages of the force redun-
dancy. Various such strategies are available (Nakamura , 1991),
but mostly in the context of improving motion characteristics. In
this paper, the question of redundancy resolution for force redun-
dancy is considered and some simple force optimization strate-
gies are explored as a beginning. Indeed, more research is needed
in this direction for better utilization of force redundancy.

2 Force Redundancy

In this section, certain important implications of force redund-
nacy in parallel manipulators are summarized.

1. In parallel manipulators, the static or force redundancy is
characterized by additional in-parallel chains (legs) to sup-
port the load more effectively.

2. With more legs, the direct (position and velocity) kinemat-
ics problems become over-specified and, therefore, easier to
solve.

3. The inverse force transformation of statically redundant ma-
nipulators is under-specified, and has infinite solutions.

4. The workspace of the parallel manipulator gets more re-
stricted due to the additional motion constraints of the re-
dundant leg.

5. For every degree of redundancy, the manifold of the force
singularities reduces by one in dimension, in general.

6. Redundancy resolution involves the selection of a set ofac-
tuator forces/torquesout of infinite possible solutions.

These aspects have been analyzed in detail in an earlier work
(Dasgupta and Mruthyunjaya , 1998a).
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3 Inverse Dynamics and Redundancy Resolution

As mentioned in section 2, determination of actuation forces for
a statically redundant parallel manipulator involves the problem
of redundancy resolution. Thus, forces required at the actuators
can be optimized in some sense by selecting a particular solution
of the inverse dynamics (or statics) problem.

The typical form of the dynamic equation of a parallel ma-
nipulator (Dasgupta and Choudhury , 1999) is given in the task-
space as

H F = J
[

ẗ
α

]
+ η (1)

whereJ is the inertia matrix,η represents other nonlinear com-
ponents andH is the force transformation matrix mapping input
forces (F) to the task-space. Representing the right-hand-side of
the equation byT (for inverse dynamics), we get

H F = T (2)

For a redundant manipulator,H is rectangular (with less rows
than columns) and redundancy resolution would require a partic-
ular solution of equation 2.

The pseudoinverseH# gives the solution with minimum
norm of F and is a good candidate for redundancy resolution,
because that seems to require least effort1 at the actuators. How-
ever, this may be inefficient in optimizing the force required from
individual actuators. In order to meet actuator force constraints,
a better choice can be the resolution of redundancy through a
minimax solution ofF. If the null space ofH is given byF0,
then the general solution of equation 2 is given by

F = H#T + F0u (3)

and a minimax solution will find the value ofu by minimizing
the maximum of|Fi|.

Though the minimax solution has the advantage over the
minimum norm solution, of giving the utmost benefit of redun-
dancy to the most severely loaded actuator, the force demands
are discontinuous at instants when two legs have the maximum
force magnitude, i.e. when there is a change of the ‘most severely
loaded actuator’. Relaxing the minimax criterion to some extent
in such situations, the force demands can be made continuous.

Drawing from a more generalized norm

‖F‖k =

[∑

i

|Fi|k
]1/k

, (4)

the norm with a high even index (k = 6 or 8, for example) can be
minimized to obtain solutions which give good trade-off between
the minimization of the largest force and continuity. The results
in the next section correspond to the norm fork = 8, apart from
the pseudoinverse and the minimax solutions. Obviously, the

1e.g. minimum total power, for a given trajectory

pseudoinverse solution and the minimax solution can be viewed
as special cases withk = 2 andk = ∞, respectively.

Thus, in different situations, one can prefer different strate-
gies. If total power is the governing criterion, then one would
choose the pseudoinverse solution. On the other hand, if the
actuators are quite severely loaded and operating close to their
capacity, then the greatest actuator force becomes the deciding
factor. In that case, one may use the minimax solution, or the
more practical solution given by a high-index norm (say the 8-
norm). In some situations, a weighted norm may also be used, as
in (Gonzalez and Sreenivasan , 2000), if actuators widely vary
in their force/torque capability. Other redundancy resolution
schemes are also possible. For example, a scheme may focus on
fault-tolerance, in which the redundant actuations are reserved
for use only when the regular ones fail to give the required resul-
tant force (and moment) at the end-effector. In another situation,
the redundancy could be in the form of passive compliant sup-
ports, in which case the redundancy resolution strategy has to
consider both forces and motion at the same time for effective-
ness. Evidently, a good deal of research is required to address all
these issues in detail.

4 Example: A Redundant Stewart Platform

Platform

Base

Extensible 
    legs

X

Y

Z

y

x

z

Figure 1: Redundant Stewart Platform with Seven Legs

As an example, let us consider a single degree of redundancy
(one redundant leg) in a genaralized Stewart platform. The in-
verse dynamics of the resulting 7-legged manipulator (Figure 1)
requires the solution of the6× 7 system given by equation 2.

The redundant Stewart platform studied here is essentially
a 7-legged redundant version of the ‘Test Manipulator’ studied
for inverse dynamics in (Dasgupta and Mruthyunjaya , 1998b).
The inverse dynamics formulation is also similar to the one re-
ported there2. The singular path studied there for the 6-legged

2The datails of dynamic formulation are not very relevant for this paper.
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Figure 2: Redundant Stewart Platform — Leg Forces
(GI: Pseudoinverse, MM: Minimax, HN: High-index Norm)

non-redundant Stewart platform is taken up here for inverse dy-
namic analysis with respect to this redundant Stewart platform
manipulator. The configuration of the manipulator is represented
by the position vectort = [x y z]T of the origin of the platform-
frame and the RPY anglesΘ = [θx θy θz]T (with respect to the
base-frame). The path is planned as a linear path with parabolic
blends (having segments of constant acceleration, constant ve-
locity and constant deceleration) in each of the six task-space
coordinates between the initial pose

t0 = [0.4 1.4 1.2]T , Θ0 = [0.1 0.2 0.0]T

and the final pose

t1 = [0.8 1.8 1.8]T , Θ1 = [0.3 0.4 0.0]T

for a total period of 6 seconds and velocity constraints for linear

motion asVmax = 0.2 and that for angular motion asΩmax =
0.08. (All data are in SI.)

The three redundancy resolution schemes discussed in the
previous section are employed. The forces in all the seven legs
and the greatest leg forces from the solutions are shown superim-
posed on one another in Figure 2, where the pseudoinverse (min-
imum norm) solution is shown by continuous line, the minimax
solution by heavy dots and the solution minimizing the 8-norm
by dotted line (with light dots). It is found that the 8-norm solu-
tion provides a good trade-off in this case. With an increase in the
indexk of the norm, the solution approaches the minimax solu-
tion more closely, and changes in the actuator force demands be-
come sharper leading to a loss of continuity in a practical sense.

Comparison with results reported earlier (Dasgupta and
Mruthyunjaya , 1998b) for the 6-legged non-redundant Stewart
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platform manipulator (composed only of the first six legs from
the current example), it is seen that the redundancy introduced
by the seventh leg has eliminated the singularity of the path.

Another fact that is apparent from the plots is that, though
singularity is eliminated by the redundancy, the ill-conditioning
is still quite high, manifesting in large force magnitudes. An
optimal placement of the seventh leg in the perspective of the
other six legs or an optimal synthesis of connection-points for all
the seven legs is expected to reduce the ill-conditioning as well.

5 Conclusions

The exploration of the potential of force redundancy has signif-
icant importance in the control and design of parallel manipu-
lators. For control, redundancy resolution schemes need to be
analyzed for optimizing performance and/or for satisfying oper-
ating constraints. In the current paper, a few simple schemes are
demonstrated and compared. More detailed study will certainly
be useful in developing effective control strategies for different
situations. So far as the kinematic design of the manipulator is
concerned, the placement of the redundant limb for optimal per-
formance is also important.
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Appendix

Kinematic and dynamic parameters of the 7-legged redundant Stewart
platform (all in SI units):
Base points:

[
0.6 0.1 −0.3 −0.3 0.20 0.5 0.5
0.2 0.5 0.3 −0.4 −0.30 −0.2 0.0
0.0 0.1 0.1 0.0 −0.05 0.0 0.0

]

Platform points (in platform frame):

[
0.3 0.3 0.0 −0.2 −0.15 0.15 0.0
0.0 0.2 0.3 0.1 −0.20 −0.15 −0.2
0.1 0.0 0.0 −0.1 −0.05 −0.05 0.0

]

Mass of lower and upper part of each leg:

md = 3.0 and mu = 1.0

Centres of gravity of lower and upper parts of each leg (in local frames):

rd0 = [0.4 0.14 − 0.18]T and ru0 = [−0.6 − 0.08 0.08]T

Moments of inertia of lower and upper parts of each leg (in local
frames):

Id0 =

[
0.010 0.005 0.007
0.005 0.002 0.003
0.007 0.003 0.001

]
, Iu0 =

[
0.005 0.002 0.002
0.002 0.002 0.001
0.002 0.001 0.003

]

Platform mass (including payload):M = 40.0
Centre of gravity of the platform and payload (in platform frame):

R0 = [0.04 0.03 − 0.06]T

Moment of inertia of platform and payload (in platform frame):

Ip =

[
0.050 0.003 0.004
0.003 0.040 0.003
0.004 0.003 0.100

]
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Abstract: A new parallel manipulator POLMAN-3L for the 
use of the measurement applications is presented in the 
paper. It is parallel mechanical arragement with three 
degrees of freedom equipped with typical slide gauges and 
computer for acquisition of the data. Manipulator is consist 
of three properly situated serial chains connected in parallel 
way to end-element, which has the form of the platform with 
measuring probe. It is equipped with spherical joints and is 
attached to actuated mechanisms with using three identical 
rods. Because of good isotropy of the mechanical part, and 
homogenous space structure, mechanism has very good 
kinematic manipulability, and so the generated errors are 
similar in each direction in 3-D space and similar to errors 
of slide gauges. All gauges are connected with the base of the 
system. Manipulator can be use for the measure of smooth 
surfaces after technological operations. Because of special 
geometry some properties of its are similar to the cartesian 
manipulator. Adopted kinematic systems allows for easy 
solution of both inverse and direct kinematic tasks. 
Mechanical construction of the system are modular and very 
light, each elements are low cost in fabrication. 
 
1 Introduction 
 
New technological applications of the robots need new 
approaches for the organization of its technological stands. 
Measuring the geometrical shape of the surface in order to 
prepare its mathematical model employing classical 
measurement methods is a very expensive task (high cost of 
machinery). For realizing milling and/or polishing with the 
use of some new kind of robots, it needs to use three-
dimensional measuring systems for the measure worked-out 
surfaces exactly on the stand. In some applications 
considerable exactness measured in mic rometers is not 
necessary (accuracy in 0.1 mm order is enough) but it would 
be desirable to have a measuring device portable and 

relatively cheap. Known from the literature laser scanning 
methods are rather very expensive, while typical 
measurement systems  used in measurement machines are 
rather bulky and heavy, and so its applications on the stand 
with the robot can be very difficult. Because of that, last time 
it has been invented some new approaches for the solving 
such a difficult task. One of them is presented in this paper. 
The principle of such a measuring system was derived from 
the class of spatial manipulators typically used as mechanical 
arragements of very fast parallel robots [see Mianowski 
1994, 2000]. Compared to serial manipulators, parallel 
systems have some advantages like a stiff mechanical 
structure and more precise positioning. Limited working area 
and reduced maneuverability of the end element are the main 
disadvantages of typical parallel manipulators of Stewart 
platform type. The main advantages of proposed system are 
simplicity and lightness of the construction with relatively 
high (good) stiffness of the mechanism, and clear concept of 
kinematic description of mathematical model. Adopted 
kinematic arragement has very good isotropic kinematic 
properties. Because of well-conditioned kinematic 
transformation between the input and output, obtained results 
of the measure have very clear interpretation.  
   
2 Polman-3L manipulator for the measuring 

applications 
 
Good isotropy of three DOF parallel manipulator can be 
achive when possible motion of the end element are 
determined by three identical orthogonal components of 
linear velocities [Mianowski 2000]. When the use three linear 
slides mounted to the base, and connected to them spatial 
moving mechanism, one of possible arragement of the 
manipulator could have a form shown in the general scheme 
in Fig. 1a.  
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a)  

b)  
Fig. 1. General scheme of POLMAN-3 manipulator for the 

measure of smooth surfaces 
a) kinematic arragement, b) kinematic model for calculation 

of the position 
 
Manipulator POLMAN-3L is consist of specially connected 
three typical slide gauges located in the base in such a way, 
that each one slide is perpendicular to two the others. Each 
slide can realize translational motion. The end element of the 
manipulator is connected to slides with the use six identical 
rods in such a way, that three of them are mounted to one 
special spherical joint on the platform. Three the other 
connecting rods are located in such a way, that moving 
platform has the form of spatial parallelogram, and so it can 
only realize translational motion in the space (without any 
rotations). Mechanical part of the system has very high 
(good) stiffness, and can assure very small mechanical 
hysteresis. The resolution of each slide is ±0.01mm, so the 
average resolution of the measure is no more then ±0.02mm 
(approx. ±0.015mm) in each direction in the space. 
 
3  Kinematic model of the manipulator 
 

Kinematic model of POLMAN-3L manipulator is 
derived with the use vector method. General scheme of 
kinematic model is shown in the Fig. 1b, where the vector 
w is mean as w . The basic absolute reference frame is a 

cartesian orthogonal dextrorotary ( )3210  x, x,xπ . Current 

configuration of the mechanism can be described 

equivalently with the use vectors [ ]T
3P2P1PP x,x,x=r , 

describing current location of point P in absolute reference 

frame, or [ ]T
321 l,l,l=l , describing local coordinates of the 

moving tables of slide gauges. Vectors described coordinates 
of locations slide gauges are in the form: 
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Measured trajectory of the ball gauge while its moving 
with the contact with measured surface in absolute reference 
frame is a set of points in the form: 
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The basic kinematic relation describing mathematical 

model of the manipulator is: 
 

( ) Pii rca =++ lt       (4) 
In more compact form it can be described: 
 
    ( )aPP rr =         (5) 
 
Where Pr  in the form (5) is called now as manipulation 
vector, while a in the form a = [a1,a2,a3]T  is a joint vector. 
Solution of equation (4) can be obtained as intersection of 
three spheres with constant radius of each l, and with the 
center in the point of the end of vector [ ](t)ia , located away 
by vector c represent probe element on the end-effector with 
constant orientation. There exist two solutions of this task, 
and so it has to take only one for positive xiP. Working space 
of the manipulator can be obtained by inspection of relations 
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(5) according to (1). It is area between six spheres with radius 
l each, which centers are located in points on the ends of 
slides in the base. Workspace of the manipulator is shown in 
the Fig. 2a.  

a)  

b)  
Fig. 2. Basic features of the manipulator POLMAN-3L: 

a) workspace, b) generated errors of the end-effector 
 
Error of the position of the end-effector P is composed of 
three independent components generated in sliding gauges 
and transmitted to the end-effector. Appropriate its 
components can be derived from general form of differential 
equations (5) of kinematic model of the manipulator [6]:  
 
    ( ) llJrP dd =        (6) 
in the form: 
    ( ) llJrP ∆=∆        (7) 
 
where matrix ( )lJ  is the Jacobian matrix of the whole 

system d(.) is operator of differentiation, and ∆ is the first 
difference of actual variable. Scalar value: 
 

     det TJJ=w       (8) 
 
is defined to be the manipulability measure at state l  with 
respect to the manipulation vector Pr . In investigated 
kinematic model of POLMAN-3 manipulator dimensions of 

vectors of input and output variables are the same, and equal 
to 3, so the manipulability measure is simply given by: 
 

    Jdet=w         (9) 

 
It means, that normalized error generated in the mechanism 
of POLMAN-3 manipulator can be simply obtained from 
equation (9) as euclidean norm of the determinant of 
Jacobian matrix. In 3-D space, this error can be interpreted as 
is shown in the Fig. 2b, where ∆i are the vectors generated 
from sliding gauges seen in the end-effector, while ∆P  is 
produced error of the end-effector. By expecting equation (9) 
in working space, one can show, that produced error is not 
exceed ±0.02mm.  
   
4 Initial results, applications 
 

On the basis of the idea described in the paper a number 
of prototypes of similar measure systems has been designed 
and made. POLMAN-3L manipulator has been realized with 
the use electronic slide gauges with working range 300mm 
and measure resolution 0.01mm, They have been connected 
exactly to the computer. The other characteristic lengths of  

 

a)  

b)  
Fig. 3. POLMAN 3L manipulator 

a) general view, b) measuring probe, 
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the system are l=450mm. Ball multijoint of the structure has 
been mounted exactly to the tool at the end of the 
manipulator.  
One of such a system with linear slide gauges mounted to the 
base with using ball joints and with three DOF’s is shown in 
the fig. 3a. 
POLMAN-3 manipulator can be used as a measuring 
machine for the measure of smooth surfaces after 
technological operations. It has been used in the stand with 
RNT robot. First applications was the measure probes after 
polishing realized with the use RNT robot shown in Fig. 4.  
 

a)  

b)  

c)  
Fig. 4. Polishing operations realized with the use of RNT 

robot: a) general view of laboratory stand, b) polished 
surface, c) results of the measure 

 
The other applications of POLMAN-3 manipulator was the 
measure of milled surfaces. It has been realized from point to 
point with actual acquisition of the data. In order to prepeare 
visualization and for calculate average errors, in the next step 
it have to be calculate new coordinates of the measuring 
surface by smoothing the data, and prepeare collection of 
coordinates of regular or irregular meshes for presentation on 
the monitor and for correction of the robot trajectory. It has 
been observed several conclusions: 

(1) results of the measure are accurate and stable, 
(2) proposed method is able to measure most items of 

the motion accuracy of the robot, 
(3) measuring results characterized of good 

repeatability.  
After a number of initial tests, it was decided to use this same 
arragement to on-line measure of the position of the end 
point of end-effector with ball in the place, where the tool is 
mounted as it is shown in Fig. 6. Procedure of local 
correction of kinematic model in such a case is based on  
 

a)  

b)  
c) 

 
Fig. 5. Initial results of the measure smooth surfaces 

a) measured points of human upper limb, 
 b) surface obtained in UNIGRAPHICS system, 

c) grid model of human body destined for planning of 
surgical operations. 

264Non Refereed White Paper



 

a)    

b)  
Fig. 6. Manipulator POLMAN 3L on the stand with RNT 

robot: a) local correction of kinematic model, b) localization 
of the tool with respect to machining piece. 

 
deriving and implementing an algorithm for improvement 
kinematic calculating of position and orientation of the robot. 
It was realized in such a way, that in investigated subspace of 
working space of the robot the vector of the difference 
between position and orientation calculated from corrected 

kinematic model and measured sized of them are minimal in 
the sense of its euclidean norm.  
Manipulator has been used to the measure of the other 
models with smooth surfaces i.e. of human hand, as it is 
shown in Fig. 3a. Modified system has been used to the 
measure of the human body for computerized virtual model 
as it is shown in Fig. 5. 
Some measure operations have to be realized in two steps: 
- locating element should be measure in two locations, 
measured points are shown in two ways in Fig. 7a,  
- selected trajectories are connected to closed curves as it is 
shown in Fig. 6b 
Calculated model obtained with the use UNIGRAPHICS 
system is shown in Fig. 6c.  
 

a)  

b)  

c)  
Fig. 7. Initial results of the measure surfaces obtained in two 

steps: a), b) grid of human hand, c) computer model,  
 
For improving absolute accuracy of the measure it is 
profitable to equippe it with special calibration element in the 
form of spatial corner with very accurate measured distances. 
For achieve improved in such a way absolute accuracy of the 
system, special fixture has been designed and implemented. 
It has been shown, that because of good kinematic properties 
and enough accuracy, it can be implemented on the other real 
stands.  
Worked-out parallel manipulator POLMAN-3L has been 
implemented in real stand with RNT robot. Obtained results 
can be summarized as follows: 
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- POLMAN 3L manipulator has a compact modular 
structure and relatively large working space with 
high resolution and very good isotropic kinematic 
properties, its cost is relatively very low,  

- proposed method of the measure can be 
implemented exactly on the machining stand at the 
laboratory or in the workshop, 

- generated errors are not exceed 0.02mm, while there 
is no any elastic deformations of the structure, and 
there is no any mechanical hysteresis,  

- installation process of the manipulator on the stand 
is simple and reliable, and so measuring working is 
easy and convenient in actual measurement,  

- because of modularity it is very easy to apply  
selected results to make portable system working on 
the base of this same idea,  

- moving elements are very light and so it is very easy 
to apply driving systems to drive manipulator 
automatically for very fast and accurate motion. 

 
4 Summary 
 
 Worked-out parallel manipulator POLMAN-3 for the 
measurement applications has been designed, constructed and 
built. Because of compact structure, good isotropic kinematic 
properties and good appropriate accuracy it  can be used for 
some measurement applications after technological 
operations. With application of very simple driving system, it 
can be used as automatic measuring system. It is very 
convenient for the use it as a portable system. Manipulator 
can be use exactly in technological process without changing 
any its functional components. Mechanical part is modular 
and very simple, its cost is very low. Another advantage of 
the proposed solution is the fact, that it is easy to change 
parameters of the measurement system (e.g. characteristic 
linear or angular dimensions) for individual neccesity. 
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Abstract: The main objective of this paper is to find a funda-
mentally sound and robust numerical methodology for synthesiz-
ing parallel manipulators for desired workspaces. The method
includes a constrained optimization formulation aimed at deter-
mining a manipulator design so that a prescribed workspace is
both fully enclosed and well-conditioned with respect to some
performance index. Dextrous requirements within the prescribed
workspace may also have to be satisfied. The particular manip-
ulator used to illustrate and evaluate the proposed method is a
simple planar 3-dof parallel manipulator. Solutions to the ma-
nipulator design problems are found in an efficient and convinc-
ing manner.

1 Introduction

It is well known that parallel manipulators possess a number of
advantages over traditional serial manipulators (Merlet, 2000).
One disadvantage of parallel manipulators is that the particu-
lar architecture of the manipulator results in smaller workspaces
than their serial counterparts. Parallel manipulators can also be
difficult to design, since the relationships between design pa-
rameters and the workspace, and behavior of the manipulator
throughout the workspace, are not intuitive by any means. In-
deed, Merlet (2000) argues that since the performance of parallel
manipulators is so dependent on their dimensions, customization
of these manipulators for each application is absolutely neces-
sary. An effective way of performing this customization and of
addressing the problems stated above is through the use of opti-
mization techniques in the design process.

The constrained optimization formulation presented here is
aimed at determining a manipulator design so that a prescribed
workspace is fully enclosed and well-conditioned with respect to
some performance index. Depending on the particular applica-
tion, certain manipulator performance criteria may be of more
importance than others. The performance measure used here

is the condition number of the manipulator Jacobian, although
a number of other performance measures could also have been
used. The optimization method used in performing the optimiza-
tion is the Dynamic-Q method (Snyman and Hay, 2000a).

In the next section the proposed optimization formulation
is described. This formulation is then applied to a planar 3-dof
planar parallel manipulator.

2 Optimization formulation

2.1 Definition of the workspace

As used by Hauget al. (1994), generalizedcoordinatesq =
[q1, q2, . . . , qnq]T ∈ Rnq describe the motion of the manipu-
lator. These generalized coordinates can be divided intoinput
coordinatesv = [v1, v2, . . . , vnv]T ∈ Rnv, used to control the
manipulator,outputcoordinatesu = [u1, u2, . . . , unu]T ∈ Rnu,
describing the functionality of the mechanism, and the remain-
ing intermediatecoordinatesw = [w1, w2, . . . , wnw]T ∈ Rnw,
wherenw = nq−nu−nv. In the vicinity of an assembled con-
figuration the input and output coordinates satisfym independent
kinematic constraint equations of the form

Φ(q) = Φ(u,v,w) = 0 (1)

whereΦ : Rnq → Rm is a smooth function.
Limits imposed by the construction of the manipulator are

described by means of inequality constraints placed on the input,
or sometimes the intermediate coordinates. These respectively
take the forms

vmin ≤ v ≤ vmax (2)

wmin ≤ w ≤ wmax (3)

These constraints, together with the geometry of the ma-
nipulator, determine the size and shape of the workspaceAc of
the manipulator. The workspace is the set of points that can be
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Figure 1: Prescribed and calculated workspaces

reached by theworking pointof the manipulator. The boundary
∂Ac of the workspace is defined as: (Snymanet al., 2000)

∂Ac = {u ∈ Rnu : u ∈ Ac and ∃ an s ∈ Rnu such that for
u′ = u + λs, λ ∈ R arbitrarily small and either
positive or negative, no v and w exist (4)

that satisfies Φ(u′,v,w) = 0; as well as
inequalities (2) and (3)}

There exist a number of different methods for determining
workspaces of manipulators. In this study, an optimization
method that is based on the above definition of the workspace
is used. The particular optimization method used is the chord
method (Snyman and Hay, 2000b). The optimization method
uses the LfopC algorithm (Snyman, 2000) to determine discrete
points bci, i = 1, 2, . . . , nbc along the boundary∂Ac of the
workspaceAc, as shown in Fig. 1.

2.2 Constrained optimization formulation

The problem studied here is to determine a manipulator design
vectord which has a corresponding workspaceAc that fully in-
cludes a prescribed workspaceAp, and such that the included
Ap is well-conditioned. As indicated in Fig. 1, the prescribed
workspace is defined by polar coordinates(rp, βp) centered on
a local coordinate systemx′ − y′ at qp. The boundary of the
workspaceAc associated with designd may be defined in a sim-
ilar manner (Fig. 1). Here the boundary pointbci, generated
by the chord method (Snyman and Hay, 2000b), corresponds to
angleβci and ray lengthrci.

The part of workspaceAp not intersectingAc is denoted
δAp, and the part of workspaceAc not intersectingAp is denoted
δAc. The calculation of approximations to the areasδAp andδAc

is performed using a simple numerical scheme.
It is evident that for any prescribed workspace there is a

very large number of manipulator designs which will result in
a workspace that fully includes the prescribed one. Murray
et al. (1997) and Merlet (2000) have proposed different meth-
ods for determining the set of manipulator configurations, the
workspaces of which include prescribed points, or line segments.
The most suitable manipulator with respect to some performance

criterion or criteria can then be selected from this set. The
method proposed here differs from these methods in that the op-
timum solution is obtained directly in one step. Thus the con-
strained optimization formulation, proposed here, is aimed at op-
timizing manipulators with respect to some performance index,
subject to the constraint that the workspace of the optimal ma-
nipulator should include the prescribed workspace.

The specific performance measure chosen here is the inverse
of the condition number of the Jacobian matrix of the manipula-
tor. The accuracy of control of the manipulator is dependent on
the condition number, denoted here byκ (Gosselin and Angeles,
1991). Sinceκ tends to infinity as the manipulator approaches
a singular position, maximizing the inverse condition number,
κ−1, ensures that the manipulator remains far away from singu-
lar positions. For a parallel manipulator the inverse kinematics
are easy to solve. From (1), an inverse transformation relating
the input, output and intermediate velocities can be determined:

Jθ θ̇ = −Jvv̇ (5)

whereθ = [uT ,wT ]T andJθ andJv are the respective con-
straint Jacobian matrices, containing the partial derivatives of the
m kinematic constraints (1) with respect to the variablesθ andv.
This can be rewritten as

Jθ̇ = v̇ (6)

whereJ = −J−1
v Jθ. For the parallel manipulator studied here

m = n = nv = nu + nw. The condition numberκ of then× n
JacobianJ is defined as

κ = ‖J‖‖J−1‖ (7)

where‖ · ‖ denotes any norm of its matrix argument. The norm
adopted here is the same as that used by Gosselin and Angeles
(1991), namely

‖J‖ =
√

trace(JWJT ) (8)

whereW is defined asn−1 multiplied by then × n identity
matrix. The lower the condition number, the better the behavior
of the manipulator, with the lowest possible value ofκ being
unity. Theinverseof the condition number thus lies between 0
and 1, and is used in the objective function as it is bounded and
better conditioned than the condition number itself.

The optimization problem is thus:

max
d

{
min
u∈Ap

κ−1 (d,u)
}

subject to the inequality constraint (9)

c(d) ≤ 0

where the vector of intermediate coordinatesw is prescribed
and fixed, and where the inequality constraint functionc(d) is
defined as follows. The displacement vector between the pre-
scribed workspace boundary and calculated workspace bound-
ary, measured along a ray emanating fromqp at anglesβci is
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denoted byriei, whereei is a unit outward vector at angleβci.
If rj = mini {ri, i = 1, 2, . . . , nbc} then setr = rj . The con-
straint function is now defined as follows:

c (d) =
{

δAp if δAp > 0
−r2 if δAp = 0 (10)

This is done to improve the topography of the inequality con-
straint which in turn improves the behavior of the optimization
algorithm.

The solution to optimization problem (9) seeks to improve
thesingle worst pointwith respect to chosen performance mea-
sure,κ−1, within theprescribedworkspace,Ap. This philosophy
differs from that proposed by Gosselin and Angeles (1991) and
used by numerous other researchers where theaverageperfor-
mance index over theentire workspace is optimized. Since in
this case it is assumed that the manipulator’s movements will be
limited to the prescribed workspace it is only necessary to en-
sure good performance qualities within this workspace and thus
it is better here to optimize the single worst value instead of the
average.

One point which arises concerns the nested part of optimiza-
tion problem (9) and the question of how to determine the small-
est value ofκ−1 over the setu ∈ Ap. Since we only require the
single lowest value of the inverse condition number, an efficient
method for determining this value, based on the convexity of the
condition number is proposed and used here. It can easily be
shown, for a planar 2-dof manipulator studied previously (Hay
and Snyman, 2001), thatκ is convex over the planeR2, and thus
that the maximum value ofκ (or minimum ofκ−1) will lie on the
boundary∂Ap of the prescribed workspace. Here an assumption
is made that a similar result can be found for the particular 3-dof
manipulator to be investigated here. The minimum value of the
inverse condition numberκ−1 can thus be approximated by cal-
culatingκ−1 at pointsbpi, i = 1, . . . , nbc simultaneously to the
determination of the boundary pointsbci, i = 1, . . . , nbc. The
overall minimum of theκ−1 values at these candidate points may
then easily be determined. Based on the results presented later in
this paper it appears that the above assumption is valid.

3 Three-dof planar parallel manipulator

The three-dof planar parallel manipulator taken from Hauget al.
(1994) is shown in Fig. 2. The mechanism consists of a plat-
form of length2r connected to a base by three linear actuators
of variable leg lengthsl1, l2 and l3. The actuators are joined
to the base and platform by means of revolute jointsA − E.
It will be assumed thatyC = yD = yE . The coordinates of
pointP , the working point of the platform, are(xP , yP ) and the
orientation of the platform isφP . With reference to the defini-
tions given in sections 2.1 and 2.2, the actuator leg lengths are
the input variables, i.e.v = [l1, l2, l3]T . The global coordi-
nates of the working pointP form the output coordinates, i.e.
u = [xP , yP ]T . The rotation angle of the platform is the only
intermediate coordinate, i.e.w = w = [φP ] . The generalized
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Figure 2: The 3-dof planar parallel manipulator

coordinates for the three-dof parallel manipulator are given by
q = [uT ,vT ,wT ]T = [xP , yP , l1, l2, l3, φP ]T . It is assumed
the the actuators have been chosen and thus that the maximum
and minimum leg lengths are predetermined. The remaining five
design variables for the problem are thus

d = [xC , yC , xD, xE , r]T (11)

Certain points arise now due to the platform’s orientational
ability. First amongst these is the fact that the Jacobian of the
manipulator contains entries related to both translational and ro-
tational abilities of the platform. The condition number will thus
inherently contain a mix of these terms. It is thus important
to normalize the translational terms of the Jacobian matrix so
that translational and rotational abilities are equally represented
by the condition number. Pittens and Podhorodeski (1993) and
Stoughton and Arai (1993) note this occurrence and suggest that
the best approach is to normalize the translational terms of the Ja-
cobian with respect to the platform radiusr, a suggestion which
is adopted here.

The second point arising is that some strategy needs to be
implemented for dealing with the fact that the condition num-
ber number needs to be minimized throughout the manipulator’s
three-dimensional(x, y, φ) workspace. Indeed, the prescribed
workspace is also 3-dimensional. This point is addressed by
evaluating the problem at various angular “slices” through the
workspace. This is the approach used by Boudreau and Gosselin
(2001) in an unconstrained case. Accordingly, in the example
considered here, the minimization overu = [x, y]T in (9) is car-
ried out, not only for a single prescribed value ofφP , but over
three slices of the prescribed workspace corresponding to three
fixed values ofφP , namelyφP = −5◦, 0◦,+5◦. In doing so
the optimized design is expected to fulfill the dexterity require-
ment of operating over the range ofφP = [−5◦, 5◦] within the
prescribed workspace.

Optimization problem (9), now modified to allow for the
optimization over the three values ofw = φP , was solved us-
ing the Dynamic-Q algorithm (Snyman and Hay, 2000a). In this
method, the LfopC algorithm is used to solve successive spher-
ical approximations of the optimization problem. During exten-
sive testing of the method on a set of representative test prob-
lems, the solutions of the successive approximate subproblems

269Non Refereed White Paper



P [i], i = 1, 2, . . . invariably converged towards local minima
(Snyman and Hay, 2000a).

The method described above has been applied to the 3-
dof planar parallel manipulator for the prescribed workspace
shown in Fig. 3. For the initial design vectord0 =
[−0.75, 0, 0.75, 1.5, 0.75]T , the manipulator workspaces for var-
ious constant orientations, as well as the corresponding inverse
condition number contours for the respective orientations are
shown in Fig. 3. Actuator limits were chosen aslmin

i =
√

2,
lmax
i = 2, i = 1, 2 andlmin

3 = 1, lmax
3 =

√
2. The Dynamic-Q

move limit used was4 = 0.1 and the chord length for calculat-
ing the workspace was 0.02.
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Figure 3: Prescribed workspace, starting manipulator workspace
andκ−1 contours for (a)φP = −5◦ (b) φP = 0◦ and (c)φP =
+5◦

For this optimization run, the number of gradient evalua-
tions required for convergence wasnge = 33, the function value
increased fromf(d0) = 0.676 to a converged objective func-
tion value off∗ = 0.901, the converged inequality constraint
function value wasc∗ = 0.204 × 10−5 and the design vector at
the solution wasd∗ = [−1.034, 0.2484, 1.331, 1.657, 0.8553]T .
The workspaces and inverse condition number contours for the
respective orientations and corresponding to this solution are
shown in Fig. 4.
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Figure 4: Prescribed workspace, manipulator workspaces and
correspondingκ−1 contours for the optimal design at respec-
tively (a)φP = −5◦ (b) φP = 0◦ and (c)φP = +5◦

4 Conclusion

For the 3-dof manipulator studied here the results obtained are
extremely encouraging and accurate, with optimum solutions
having been obtained with minimal computational effort. Al-
though not reported here, the methodology has also been applied
to simpler 2-dof planar manipulators with very good results. In

each case the algorithm not only determines manipulator dimen-
sions so that the prescribed workspace can be reached by the ma-
nipulator, but also places the calculated workspace so that the in-
verse condition number is as high as possible throughout the pre-
scribed workspace. The proposed methodology produces con-
vincing results, indicating it to be a stable and efficient method
for designing planar parallel manipulators. The Dynamic-Q op-
timization algorithm used in the synthesis methodology exhibits
high efficiency in solving the associated optimization problem.
Although the application of this numerical methodology for syn-
thesizing parallel manipulators, which is believed to be funda-
mentally sound and robust, has been restricted to the simple 2-
dof and 3-dof manipulator cases, it nevertheless led to a scheme
that appears to be general. It is hoped that the principles de-
veloped here can be extended to similar, but more complicated
spatial manipulator problems.
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Abstract: This paper introduces our study on type synthesis of the lower-mobility symmetrical parallel 

mechanisms. Some synthesized 3-, 4- and 5-DOF parallel symmetrical mechanisms are introduced including 

limb-symmetrical and mechanism-symmetrical and input-symmetrical parallel manipulators. 

Keyword:  parallel mechanism  design theory  mechanism synthesis  

1．Introduction  

In recent years, the use of lower-mobility parallel manipulators for many tasks requiring its mobility fewer 
than six have drawn a lot of interest. Because lower-mobility parallel manipulators comprise fewer links and 
actuators, developers stand a good chance of reducing the costs of design and manufacturing.  

The majority of literatures on the symmetrical lower-mobility parallel manipulators dealt with the 
three-dimension translational parallel mechanisms[1-5] and the three-dimension rotational spherical parallel 
mechanisms[6-9]. A fast 3-DOF camera-orienting device was built based on the 3-DOF spherical parallel 
mechanism [10]. In addition, some 3-DOF cubic parallel mechanisms were introduced [11].  

The number of lower-mobility parallel manipulators with 4 or 5 DOF is fairly small[12-14]. An interesting 
4-DOF parallel manipulator proposed by Zlatanov and Gosselin(2001) has three rotational freedoms and one 
translational freedom.  

Generally, the desired lower-mobility parallel mechanism should have prescribed mobility and property, 
should be symmetrical with identical limbs to meet the requirements of kinematic isotropy. 

Research on parallel manipulators began about twenty years ago. The types of lower-mobility symmetrical 
parallel manipulators with 4- and 5-DOF are still deficient. Type synthesis of such a symmetrical parallel 
mechanism is rather difficult because of three existing problems. One is how to correctly calculate the mobility of 
lower-mobility parallel mechanisms by the common mobility formulas. The second is how to judge kinematic 
properties of the mobility, i.e., to determine whether they are rotational freedoms or translational freedoms. The 
third is how to keep the required mobility and properties after combining limbs and forming mechanism.  

Lie group theory has been used to synthesize new parallel mechanisms[15]. We propose the 
constraint-synthesis methodology[16], which is described in detail in another paper accepted by the International 
Jounral of Robotic Research. The fundamental idea is that the required mobility of the moving platform will be 
the map of intersection of all limb constraint systems of the mechanism.    

The constraint-synthesis method tries to simultaneously treat the type synthesis considering mobility, 
property and different kinematic pair combinations of limb. Using the method, we can get different limb 
architectures by different permutations of kinematic pairs, which means that there will be much more different 
mechanisms with the same mobility and the same property for further selection.  

Using reciprocal screw system, we define the mechanism constraint system and the limb constraint system. 
We then investigate the relations between the mechanism constraint system and the limb constraint system under 
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different geometrical conditions. Based on the relations, we propose a constraint-synthesis method for type 
synthesis of symmetrical lower-mobility parallel manipulators. The constraint synthesis method is simple and 
effective. Here we will introduce some mechanisms we synthesized with 3-, 4- and 5-DOF[17]. The detailed 
analysis has been included in some papers for publication. Some of them have been filed for Chinese patents.  

Generally, a lower-mobility parallel mechanism may have the following features:  

1) Stably realize prescribed mobility number and properties, which means it can move with 

expectant rotation or translation freedoms.  

2) Have identical limbs, which means the same number, kind and permutation of kinematic pairs 

in each limb. 

3) Keep all limbs with symmetrical distribution on the base. 

4) Have all actuators mounted in the same position of limbs on or nearby the fixed base, and each 

limb has one actuator. 

Satisfying all the four conditions, it is a fully-symmetrical parallel mechanism [18]. Satisfying the first three 

conditions, it may be named as a mechanism-symmetrical parallel mechanism. Satisfying the first two conditions, 

it is a limb-symmetrical parallel mechanism. Satisfying the first two and the fourth conditions, it may be named as 

an input-symmetrical parallel mechanism. Satisfying only the first conditions, it is an asymmetrical parallel 

mechanism. 

Type synthesis of such a symmetrical mechanism with expectant mobility and properties is difficult because 

of four existing problems. The first is how to correctly calculate the mobility of lower-mobility parallel 

mechanisms by the common mobility criterion. The second is how to judge kinematic properties of the mobility of 

a mechanism, i.e., to determine whether they are rotational freedoms or translational freedoms. The third is how to 

obtain the expectant mobility and properties of the synthesized mechanism. The most difficult problem, however, 

is how to obtain the fully-symmetrical parallel mechanism, especially, for the 5-DOF mechanism with three 

translational and two rotational freedoms.  

Here we briefly introduce some mechanisms with 3-, 4- and 5-DOF we synthesized by this method. Some of 

them have been filed for Chinese patents. All of these synthesized mechanisms are checked and are not 

instantaneous. 

Without loss of generality, we set the XY  plane of the global frame, XYZO − , coincident with the fixed 

platform plane, thus the Z  axis of the global frame is perpendicular to the fixed platform plane and is upward. 

We set the z  axis of limb frame, xyzo − , upward and parallel to the Z  axis of the global frame of the 

mechanism, and the xy  plane of the limb frame is coincident with the XY  plane of the global frame. The x  

axes of the limb frames are not parallel to each other. Because the linear dependence of any screw system is 

independent with the selection of the reference system[19], so that we may choose the most convenient frame. 

2.1 3-DOF Parallel Mechanisms 

Fig.1 shows a 3- R)RRR(R  3-DOF translational mechanism, where the line over or under R means that 

these revolute axes are parallel; (RR) denotes that the two revolute axes intersect each other. In each limb, 
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counting from the base, the first three revolute axes are parallel to the base plane, and the last two revolute axes 

are parallel to each other and not parallel to the platform plane. The fourth revolute axis intersects at a point on the 

third revolute axis. The limb twist system is 
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The limb constraint system is 

( )551 0;000 mnr −=$ ,                         (2) 

which shows that the above R)RRR(R  limb exerts a constraint couple on the moving platform. The constraint 

couple is perpendicular to the plane determined by the third revolute axis and the fourth revolute axis. The 

mechanism constraint system contains three constraint couples and they are noncoplanar. Thus the three couples 

are linearly independent and constrain three rotations of the moving platform. Hence the mechanism has only 

three translational freedoms and it is a fully-symmetrical parallel mechanism. The mobility is not instantaneous as 

well. 

Fig. 2 shows a 3-RPRRR 3-DOF translational mechanism. In the above 3- R)RRR(R  3-DOF translational 

mechanisms, we replace the second revolute pair by a prismatic pair in each limb. The prismatic pair is 

perpendicular to the first and the third revolute axis.  

              

Fig. 1 3-DOF 3- R)RRR(R  translational parallel mechanism                 Fig. 2  3-DOF 3-RPRRR translational parallel mechanism 

Fig. 3 shows a 3-RPC 3-DOF translational mechanism. In each limb, counting from the base, the first 

revolute axis and the last cylindrical axis are parallel to the base plane. The second prismatic pair axis is 

perpendicular to the other two pairs. The limb twist system is  
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By calculating the screws reciprocal to equation (3), we can get the limb constraint system 
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Equation (4) shows that a single RPC limb exerts two constraint couples on the moving platform. The three RPC 

limbs exert 6 constraint couples on the moving platform, and they are linearly dependent and the maximum linear 

independent number of these 6 couples is 3. Thus the combined effect of the 6 constraint couples equals three 

linearly independent constraint couples, which restrict three rotations of the moving platform. It is a 

fully-symmetrical parallel mechanism. 

Fig. 4 shows a 3-PRC 3-DOF translational mechanism. In each limb, the first prismatic pair axis is 

perpendicular to the base plane. The second revolute axis and the last cylindrical axis are perpendicular to the 

prismatic pair axis and parallel to the platform. It is also a fully-symmetrical parallel mechanism.  

                
Fig. 3 3-DOF 3-RPC translational mechanism                    Fig. 4 3-DOF 3-PRC translational mechanism         

2.2  4-DOF Parallel Mechanisms* 

Fig. 5 shows a 4-UPU 4-DOF parallel mechanism, which has three translational freedoms and one rotational 

freedom. In each limb, counting from the base, the first revolute axis is perpendicular to the base plane. The last 

universal pair is perpendicular to the moving platform. The axes of two intermediate revolute axes are parallel to 

one another. 

                                                        
* This mechanism had been introduced in Laval University on Oct. 2000 and a similar mechanism has a Chinese patent. 
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Fig. 5 4-DOF 4-UPU parallel mechanism                                 Fig. 6 4-DOF 3-RPR(RR) parallel mechanism 

The limb twist system is  
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                          (5) 

By calculating the screws reciprocal to equation (5), we can get the limb constraint system 

( )010;0001 =r$                               (6) 

Equation (6) shows that a single UPU limb exerts one constraint couple on the moving platform along the normal 

of the crosshead plane. The four UPU limbs exert four constraint couples on the moving platform, and they are 

coplanar and linearly dependent. The maximum linear independent number of these four couples is two. Thus the 

combined effect of the four constraint couples equals two linearly independent constraint couples, which restrict 

two rotations of the moving platform. The axes of two rotations are all in XY plane. Thus the 4-UPU parallel 

mechanism has three translational freedoms and one rotational freedom about the Z  axis. The mechanism is  

fully-symmetrical. 

Fig. 6 shows a 4-DOF 3-RPR(RR) parallel mechanism. In each limb, counting from the base, the first 

revolute pair axis is parallel to the third revolute pair axis. The second prismatic pair axis intersects and is 

perpendicular to the adjacent revolute pairs, i.e., the first and the third. The fourth and the fifth revolute pair axes 

converge toward a common point, denoted by (RR). The common point is called as the central point. Note that in 

all of the three limbs, the fourth and the fifth revolute pair axes converge toward the same central point. The first 

revolute pair axes in all of the three limbs are in the base plane and set symmetrically. The limb twist system is: 
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                         (7)  

By calculating the screws reciprocal to equation (7), we have： 

( )000;001=r
1$                                (8) 
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Equation (8) shows that a single RPR(RR) limb exerts a constraint force on the moving platform. The constraint 

force, r
1$ , passes the central point and parallel to the first revolute pair axis. The three limbs exerts three 

constraint forces on the moving platform, and the three forces are coplanar, in a plane parallel to the base plane, 
and intersecting at the central point.    

Under this geometrical condition, the three constraint forces are linearly dependant and equal two linearly 

independent constraint forces in the plane parallel to the base plane. Consequently, the moving platform loses two 

translational freedoms parallel to the base plane. The 3-RPR(RR) parallel mechanism has three rotational 

freedoms and one translational freedom along the normal of the base plane. This mechanism is 

mechanism-symmetrical. This mechanism can also consists of four such RPR(RR) limbs, as shown in Fig. 7, 

which is fully-symmetrical. 

               

Fig. 7 4-DOF 4-RPR(RR)  parallel mechanism                                Fig. 8 4-DOF 3-RRR(RR)  mechanism 

Fig. 8 shows a 4-DOF 3-RRR(RR) parallel mechanism, which has the same mobility as the above 4-DOF 

3-RPR(RR) parallel mechanism. It is mechanism-symmetrical. We replace the prismatic pair in the 3-RPR(RR) 

parallel mechanism by a revolute pair parallel to the adjacent revolute pairs. This mechanism can also consists of 

four such RRR(RR) limbs, as shown in Fig. 9, which is a fully-symmetrical. 

                     

Fig. 9 4-DOF 4-RRR(RR)  parallel mechanism                        Fig. 10 4-DOF 3- R)RRR(R  parallel mechanism 
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Fig. 10 shows a 4-DOF 3- R)RRR(R  mechanism-symmetrical parallel mechanism. In each limb, the first 

three revolute axes are parallel to the base plane, and the last two revolute axes are also parallel to each other and  

normal of the platform plane. The third revolute axis and the fourth revolute axis intersect, and they form an 

crosshead plane, P34. The kinematic chain is denoted as R)RRR(R . The crosshead in the parentheses can also 

be expressed as a universal pair. Each kinematic pair in a limb is expressed by a unit screw with respect to the 

limb twist system. In the initial configuration, as shown in Fig. 10, the limb twist system is 
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,                               (9) 

where 54321 ,,,, $$$$$  are linearly independent.  

The limb exerts a constraint on the platform 

( )010;0001 =r$                                   (10) 

which is a constraint couple along the direction of y-axis reciprocal to all the five twists. Actually, it is normal to 

the plane P34, i.e., normal to all the revolute axes. The three limbs exert three constraint couples on the moving 

platform, and the three couples are coplanar, in a plane parallel to the base plane.    

                                             

Fig. 11  4-DOF 4- R)RRR(R  parallel mechanism                       Fig. 12  4-DOF 4- R)R(RRP parallel mechanism  

The three R)RRR(R  limbs exert three constraint couples on the moving platform, and they are coplanar 

and linearly dependent. The maximum linear independent number of these three couples is two. Thus the 

combined effect of the three constraint couples equals two linearly independent constraint couples, which restrict 

two rotations of the moving platform. The axes of two rotations are all in XY plane. Thus the 3－ R)RRR(R  

parallel mechanism has three translational freedoms and one rotational freedom about the Z  axis. The 
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mechanism is mechanism-symmetrical. This mechanism can also consists of four R)RRR(R  limbs, as shown 

in Fig. 11, which is fully symmetrical. 

Note that the second revolute pair in the 4- R)RRR(R parallel mechanism can be replaced by a prismatic 

pair, as shown in Fig. 12, which is also fully-symmetrical. 

2.3.  5-DOF Parallel Mechanisms 

Fig. 13 shows a 5-DOF 3-RR(RRR) parallel mechanism. In each limb, counting from the base, the first two 

revolute axes are perpendicular to the base plane. The last three revolute axes converge toward a common point. 

      

       Fig. 13 5-DOF 3-RR(RRR) parallel mechanism                      Fig. 14  5-DOF 3- PP (RRR) parallel mechanism 

The limb twist system is 
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By calculating the screws reciprocal to equation (11), we have 

          ( )000;1001 =r$ ,                                (12) 

which shows that a single RR(RRR) limb exerts a constraint force on the moving platform. The constraint force 

passes the central point and lies along the Z  axis. The three constraint forces of the mechanism constraint 

system are coaxial. They are linearly dependent and equal one constraint force restricting the translation of the 

moving platform along the Z  axis. This mechanism has three rotational freedoms and two translational 

freedoms. This mechanism is only a mechanism-symmetrical. 

Fig. 14 shows a 5-DOF 3- PP (RRR) parallel mechanism, which has the same mobility as the above 5-DOF 

3-RR(RRR) parallel mechanism. We replace the first two revolute pairs in each limb of the above 3-RR(RRR) 

parallel mechanism by two four-bar parallelograms, where the two four-bar parallelograms are denoted by PP . 
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It is also a mechanism-symmetrical. 

Fig. 15 shows a 5-DOF 3-RRR(RR) parallel mechanism. In each limb, counting from the base, the first three 

revolute axes are perpendicular to the base plane. The fourth and the fifth revolute pair axes converge toward a 

common point. The common point is called as the central point. In all of the three limbs, the fourth and the fifth 

revolute pair axes converge toward the same central point. 

          
Fig. 15 5-DOF 3-RRR(RR) parallel mechanism                Fig. 16   5-DOF 5-RRR(RR) parallel mechanism 

The limb twist system is 
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By calculating the screws reciprocal to equation (13), we have： 

( )000;100=r
l1$                              (14) 

Equation (14) shows that a single RRR(RR) limb exerts the same constraint force on the moving platform as 

a single RR(RRR) limb. By similar analysis, it is easy to find this mechanism has the same mobility as the above 

3-RR(RRR) parallel mechanism. It is mechanism-symmetrical. However, this mechanism can consist of five such 

RRR(RR) limbs and it is fully-symmetrical, as shown in Fig. 16. That is because the five line vectors are linearly 

independent, when locking all of the first revolute pairs of five limbs. 

Fig. 17 shows a 5-DOF 3-RPR(RR) parallel mechanism, which has the same mobility as the above 5-DOF 

3-RR(RRR) parallel mechanism. We replace the second revolute pair in each limb of the above 3-RRR(RR) 

parallel mechanism by a prismatic pair. The prismatic pair axis is parallel to the base plane. This mechanism can 

also consists of five such RPR(RR) limbs, as shown in Fig. 18, which is fully-symmetrical. 

Fig. 19 shows a 5-DOF 3- R)RRR(R  limb-symmetrical parallel mechanism. In each limb, the first three 

revolute axes are parallel to the base plane, and the last two revolute axes are parallel to the moving platform 

plane. The third revolute axis and the fourth revolute axis intersect, and they form a crosshead plane, P34. Note 
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that, the three first axes, $1, of three limbs are parallel to one another in the base. The three fifth axes, $5, of three 

limbs are also parallel to one another and mounded to the moving plate. The kinematic chain is denoted as 

R)RRR(R . The crosshead in the parentheses can also be expressed as a universal pair.  

              

Fig. 17 5-DOF 3-RPR(RR) parallel mechanism                Fig. 18 5-DOF 5-RPR(RR) parallel mechanism 

When each kinematic pair in a limb, as shown in Fig. 19, is expressed by a unit screw, for the initial 

configuration the limb twist system is 
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where they are linearly independent.. The limb exerts a constraint upon the platform  

( )100;0001 =r$ ,                                  (16) 

which is a constraint couple perpendicular to the plane P34.  

             

Fig. 19 5-DOF 3- R)RRR(R  parallel mechanism                     Fig. 20   5-DOF 5- R)RRR(R parallel mechanism 
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A single R)RRR(R  limb exerts a constraint couple on the moving platform, which is perpendicular to the 

crosshead plate. Three limbs exerts three constraint couples on the moving platform. Considering those three 

planes, P34, of three limbs all are parallel to the moving platform plane, the three constraint couples are in the 

same direction and linearly dependent. They only equal one constraint couple perpendicular to the moving 

platform plane, restricting the rotation about the normal of the moving plane. Hence the mechanism has five 

degrees of freedom including three translational freedoms and two rotational freedoms. 

   Since the distribution of the first axis of each limb on the base is asymmetrical (parallel), so we may only 

name this mechanism as a limb-symmetrical parallel mechanism. This mechanism can also consist of five limbs, 

as shown in Fig. 20. It is only an input-symmetrical parallel mechanism. 

4. Conclusion 

   The parallel mechanisms may be classified as fully-symmetrical, which means that both the mechanism and 

the input all are symmetrical; mechanism-symmetrical, which means that only the mechanism is symmetrical 

while the input is asymmetrical; limb-symmetrical, which means that the parallel mechanism consists of several 

the same limbs mounded on the base asymmetrically; input-symmetrical, which means it has symmetrical inputs 

and the same limb kinematic chains while the mechanism is asymmetrical. This paper introduced various different 

symmetrical parallel mechanisms. 
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Abstract:  Most of the literature describes overconstrained
parallel wrists. Such mechanisms have the essential
drawback of sensitivity with respect to the geometrical
conditions of the overconstrained mobility and therefore
errors can produce uncheckable jamming effects or internal
loads. In the classical 3-RRR parallel wrist, each leg
generates three degrees of freedom instead of the required
five degrees of freedom in an non-overconstrained 3-dof
tripod. Then an immediate idea is to add two degrees of
freedom in each leg by means of two revolute pairs for
example. But generally these added pairs remain idle or
undergo only small motions, which compensate the
geometrical errors.

Using equivalencies that result of the Lie group algebraic
structure of the Euclidean displacement set, a new 3-RUU
wrist has been discovered. In each leg if the axes of two
added R pairs intersect at one point on the fixed R axis of a
classical 3-RRR wrist, the first three R pairs are equivalent
to a spherical pair S and the whole mechanism becomes a 3-
SRR wrist. Using again the equivalence of an S pair with a
sequence RRR with converging axes, a new 3-RUU wrist
with no idle pair is designed.

1 Introduction

The classical 3-RRR overconstrained wrist (Figure 1) can
work if and only if all R axes (R stands for revolute pair) are
converging at the wrist centre O (Gosselin et al.,1989). Di
Gregorio (2001) has described an non-overconstrained 3-
RUU wrist (U stands for universal joint) by adding two R
pairs that make up U joints with the end R pairs. However the
original 3-RRR remains the active mechanism and the added
R pairs are idle pairs or just compensate some errors in the
axis convergence (Figure 2).

       

R

R

R

 O

base

platform

                 Figure 1: classical 3-RRR wrist

         

U

R

 O

base

platform

U

idle R pairs

                  Figure 2: Di Gregorio  3-RUU wrist
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Karouia and Hervé (2000, 2002) have proven that non-
overconstrained orientational tripod can be designed without
idle pairs by resorting on the Lie group algebraic structure of
the set of Euclidean displacements (Hervé, 1978, 1999). As a
matter of fact in an algebraic group the product of two
elements belongs to the group. Otherwise the product is a
closed product. One can readily verify that the product of two
displacements is also a displacement. This essential property
is still true for displacement subgroups. The set of spherical
displacements {S(N)} or orientational motions around a
given point N is a subgroup of the displacement group {D}
(Hervé, 1978). Let u be a unit vector,  (N,u) determines an
axis of rotation as being a 1-dimensional frame of reference
for an oriented straight line. The set of rotations around a
given axis {R(N,u)} is a subgroup of the subgroup {S(N)}.
Let u, v, w be a vector base.
{R(N,u)}  ⊂{S(N)}
{R(N,v)}  ⊂{S(N)}
{R(N,w)} ⊂{S(N)}
⇒
{R(N,u)} {R(N,v)} {R(N,w)} ⊆{S(N)}
because of the closed product in the subgroup  {S(N)}. The
two sets are 3- dimensional. Considering only motion types
and therefore neglecting the amplitude of the parameter
variations, we can write
{R(N,u)} {R(N,v)} {R(N,w)} = {S(N)}
Furthermore it is a known fact (Hervé, 1982) that the
sequence of three revolute pairs having axes (N,u), (N,v) and
(N,w) generate a 3-dof kinematic bond represented by
{R(N,u)} {R(N,v)} {R(N,w)}

     

Nu v

w

N

               Figure 3: kinematic equivalence

By this reasoning, the equivalence between a serial
arrangement of three R pairs with converging axes and a
spherical  pair S is now proven (Figure 3). This important
property will be employed twice for the design of a novel 3-
RUU wrist without idle pair.

2. Design of the new wrist

The design of the novel 3-RUU is obtained in two steps. In
the first step we add two R pairs in each leg of a classical 3-
RRR wrist. These idle R pairs can be introduced anywhere
into any rigid body of each leg. Let N be a point on the fixed

axis of a first leg. The choice of the added R pair axes is
made in order to implement the previous equivalency: their
axes intersect at N (Figure 4).

         

R

R  O

base

platform

R

idle R

N

idle R

                 Figure 4: addition of idle R pairs.

A spherical pair S of centre N can replace the sequence of
three R pairs whose axes converge at N, without modifying
the platform mobility. The same process is done in the other
two legs.

    

N

P

Q

O

i
j

k

                           Figure 5: 3-SRR wrist

The figure 5 shows such a replacement result. It is a 3-SRR
wrist of only theoretical interest because the fixed spherical
pairs can't be easily actuated. In a special choice of
mechanism, the two R pairs have perpendicular axes
intersecting at O and then make up universal joints U. Thus a
symbolic notation of this special parallel mechanism is 3-SU.
The spherical joint centres are denoted N, P and Q
The second design step consists of the reverse change of the
three S pairs by three sequences RRR whose axes converge
at N, P and Q. But the first R axes of the three sequences
don't intersect obligatorily at the centre O of the whole
orientational parallel mechanism. The three fixed R pairs can
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be actuated even though their axes don't converge at O and
all R pairs undergo motions. In the special choice of
perpendicular R pairs that consequently make up universal
joints U, the mechanism is a parallel wrist of the 3-RUU
type, which is not overconstrained and has no idle pairs
(Figure 6).

        

N

P

Q

O
i

j

k

         Figure 6: novel 3-RUU wrist without idle pairs.

Generally each of the four points  O, N ,P and Q is the apex
of a stiff tetrahedron. If this tetrahedron is flattened on a
plane, the general stiffness is lost and the mechanism
becomes singular and can't be used.

           

O N

i

P

j

Qk
   idle  
R pairs

      Figure 7: Special 3-RUU equivalent to 3-RRR wrist

It is worth noticing that in a special possible configuration,
the fixed R axes converge at the mechanism centre O and
then the second two R pairs are idle (Figure 7). Removing
these idle pairs the wrist will be identical to the classical 3-
RRR wrist.

3. Conclusion

A new 3-RUU parallel mechanism, which belongs to the
large family of non-overconstrained orientational tripods
(Karouia et al,. 2002b) has been described with more details
than in previous publications. This mechanism can be
regarded merely as the kinematic inversion of the simple 3-
RRS wrist (Karouia et al.,2002a)
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Abstract: This paper presented a novel six degrees of 
freedom (DOF) wire-driven parallel kinematic manipulator 
(PKM) with seven wires. In the proposed manipulator, one 
end of each wire is connected to the moving platform with a 
spherical joint and the other end is connected to a pulley 
which is driven by a servo motor. The authors investigated 
the workspace analysis of the six DOFs wire-driven PKM, 
including controllable workspace (WS) based on the concept 
of Vector Closure, workspace with tension conditions (WST) 
based on the Nullspace Method and workspace with stiffness 
conditions (WSS) based on the Eigenvalue Method. Finally, a 
case study was presented to demonstrate the application of 
the methodology to determine the controllable workspace, 
the WST and WSS using Monte-Carlo technique under the 
Matlab environment. The results show that the workspaces of 
different manipulators with different designing parameters 
differ vigorously from each other, and there is a little 
difference between the practical workspace and the 
theoretical one. If more randomly points are selected, the 
practical workspace will be closer to the theoretical one. 
 
1 Introduction 
 

Wire-driven parallel kinematic manipulators (PKMs) 
have been given more and more attention in virtual reality [1], 
force display [2], ultra-high speed robots [3] in the last 
decade, due to their advantages comparing to strut supported 
PKMs, such as simple structure, low apparent mass/inertia, 
large workspace and high speed. The topics of the researches 

about wire-driven PKMs are mechanism configuration, 
workspace analysis, stiffness analysis, dynamic analysis and 
motion control [4~10]. A few manipulators have been 
designed and tested in the laboratories for potential 
application in crane robot, force reflecting joystick or haptic 
device, rehabilitation robot, positioning device, ultra-high 
speed robot, super large-scale light robot [2,3,5,8,10,11]. 
However there are still many problems to be sorted out 
before they are introduced into industrial application due to 
their extremely complexities both in theoretical and empirical 
aspects. 

A novel six DOF wire-driven PKM with seven wires 
will be presented in this paper. In section 1, the mechanism 
configuration of the wire-driven PKM is described. 
Thereafter, the previous work about the approaches to 
analyze controllable workspace based on concept of Vector 
Closure, WST based on Nullspace Method and WSS based 
on Eigenvalue Method is outlined in section 2. Section 3 
presents a case study to demonstrate the application of the 
approaches to workspace analysis using Monte-Carlo 
technique under the Matlab environment. 

 
2 Mechanism Configuration 

 
Figure 1 describes a six DOF wire-driven PKM. Its 

moving platform looks like a cylinder, which is driven by 
seven wires via spherical joints from different directions. The 
wires are connected to a base frame via pulleys, which are 
located at the base frame and form the two end circle 
boundaries of a large cylinder. Three of the seven spherical 
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joints are distributed uniformly on the front of the moving 
platform, and the other four of them are located at the rear of 
the platform uniformly. Three of the seven pulleys are 
distributed uniformly on the front of the base frame, and the 
other four of them are located at the rear of the base frame. 

 
Figure 1: Structure model of the wire-driven PKM. 

 
The locations of the connection points of wires on the 

base frame and the moving platform are shown in Figures 2 
and 3 respectively. These locations are determined with 
consideration of geometric symmetry and simplicity that are 
typical requirements to robotic devices for general purposes. 
The moving coordinate system PPP zyxP −  is fixed on the 
center of the moving platform. The position of the reference 
point of P  is denoted by P ( ),, PPP ZYX . The orientation of 
the moving platform is described by the roll, pitch and yaw 
angles ( YPR ϕϕϕ ,, ) of the coordinate system PPP zyxP −  to 
the fixed coordinate system XYZO − . The positions of the 
connection points of the wires on the base frame are 
described in the fixed coordinate system XYZO −  and are 
denoted by iB ( ),, ,,, iBiBiB ZYX ( )7,,3,2,1 ⋅⋅⋅=i . The positions 
of the connection points of the wires on the moving platform 
are described in terms of the moving coordinate system and 
are denoted by iP ( ),, ,,, iPiPiP zyx ( )7,,3,2,1 ⋅⋅⋅=i . The 
coordinates of the connection points of wires are shown in 
Figures 2 and 3. 

 

 

 
),,(:,,0 111 BiBiBiiB ZYXBRZ β=  ( )3,2,1=i  

)0,0,(: 11 RB  , )0,
2
3

,
2

(: 11
2

RR
B − , )0,

2
3

,
2

(: 11
3

RR
B −−  

),,(:,, 222 BiBiBiiB ZYXBRZ β  ( )7,6,5,4=i  

),sin,cos(: 222224 ZRRB BB −ββ , 
:5B ( 22222 ),2/sin(),2/cos( ZRR BB −++ πβπβ ), 

)),sin(),cos((: 222226 ZRRB BB −++ πβπβ , 
)),2/3sin(),2/3cos((: 222227 ZRRB BB −++ πβπβ  

Figure 2: Connection points of wires on the base frame. 
 

 

 
 

),,(:,,,0 ,,,111 iPiPiPiP zyxPrz β=  ( )3,2,1=i  
)0,sin,cos(: 11111 PP rrP ββ , 

:2P ( 0),3/2sin(),3/2cos( 1111 πβπβ ++ PP rr ) , 
)0),3/4sin(),3/4cos((: 11113 πβπβ ++ PP rrP  

),,(:,,, ,,,222 iPiPiPiP zyxPrz β  ( )7,6,5,4=i  
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( )222224 ,sin,cos: zrrP PP −ββ  , 
:5P )),2/sin(),2/cos(( 22222 zrr PP −++ πβπβ  , 
:6P ( 22222 ),sin(),cos( zrr PP −++ πβπβ ) , 

)),2/3sin(),2/3cos((: 222227 zrrP PP −++ πβπβ  
Figure 3: Connection points of wires on the moving platform. 

 
The transformation matrix of the moving coordinate 

system PPP zyxP −  with respect to the fixed one is 
)()()( RXPYYZRPY TTTT ϕϕϕ=  
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where 
),cos(),cos(),cos( YYPPRR ccc ϕϕϕ === ),sin( RRs ϕ=  

)sin(),sin( YYPP ss ϕϕ == , Rϕ , Pϕ  and Yϕ  are the roll, 
pitch and yaw angles respectively. 

 
3   Workspace Analysis 

 
3.1 Analysis of Controllable Workspace Based on 
Concept of  Vector Closure 

 
3.1.1 Concept  of  Vector Closure 

 
In a 6 -dimensional space, a set of vector V  is vector 

closure if and only if V  has at least 7  vectors 
( 721 ,,, ωωω ⋅⋅⋅ ) satisfying  the following two conditions: 

1.  Each set of 6  vectors in this seven vectors 
( 721 ,,, ωωω ⋅⋅⋅ ) are linearly independent. 

2. 0
7

1
=∑

=
i

i
iωα   ( 0>iα  for any i )                                  

As far as a six DOF wire-driven PKM is concerned, if 
we regard iw and iα  as the wire direction vector and the 

wire tension of the thi  wire, assuming no external force and 
torque acting on the moving platform, we can deduce that the 

equation 0
7

1
=∑

=i
ii wα  is satisfied, according to the force and 

torque equilibrium of the moving platform; moreover each 
set of  6 vectors in all the seven wire direction vectors 

),,,( 721 www ⋅⋅⋅   are linearly independent, so the concept of  
Vector  Closure can be introduced here. 

One way proposed by Kawamura [5] to check whether 
the position and the orientation are not beyond singular 
points for a six DOF wire-driven PKM with six wires or not,  
is given by the relation as follows: 

kAAIfA )( ++ −+=τ                            (1) 

where T)( 721 ααατ ⋅⋅⋅=   iα :each wire tension; 
)16( ×f : force and moment vector acting on the moving 

platform; 
+A : pseudo-inverse matrix of );76( ×A  

k : an arbitrary vector )17( ×  
   The matrix A  means the relation between wire 

tensions and the net force and moment on the moving 
platform. It is obtained by  

τAf =                                                   (2) 
   The elements of matrix A  are determined by the wire 

direction from the moving platform. If the second term in 
Eq.(1) becomes positive with sufficiently large value, all 
elements of the vector τ  can become positive satisfying 
Eq.(2). Here, we remark that the vector k  is an arbitrary 
vector and the matrix )( AAI +−  is non-negative. As the 
results, it is noted that if all elements of the matrix 

)( AAI +−  are positive, all elements iτ ( )71 ≤≤ i  of the 
vector τ  become positive. In other words, we should set 
positive elements in the matrix )( AAI +−  by changing the 
angles between the wires and the moving platform. 

 
3.1.2 Procedure 

 
Kawamura[5] introduced a simple algorithm to 

determine the controllable workspace of six DOF wire-driven 
PKMs with 7 wires, as follows: 

Step 1: Set each wire direction vector )71)(16( ≤≤× iwi , 













×
= →→

→
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i
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=

→

iz

iy
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i

f
f
f

f ( 1222 =++ iziyix fff ),
→

ir  is a distance 

between the reference point P  at the moving platform and 

the thi  wire end , 
→

ir =
















iz

iy

ix

r
r
r

; 

Step 2: Calculate a vector )16( ×r  in the following way: 

7
1wWr −−= , where )( 621 wwwW ⋅⋅⋅= ; 

Step 3: Check whether every element of the vector r  is 
positive, If so, the second step of vector closure can be 
satisfied and meanwhile the pose of the moving platform is 
feasible; 

Step 4:By using the above procedure, the positioning and 
orientation  controllable workspace of the wire-driven PKM 
would be revealed. 

 
3.2  Analysis of  WST 
 
3.2.1 Nullspace Method 
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Verhoeven and Miller [8] defined that the WST is the 
set of poses where a force and torque equilibrium can be 
obtained considering each wire tension must be greater than 
its pretension minτ  and less than its maximum tension maxτ , 

and introduced an index maxk (= maxτ / minτ ) for evaluating 

the ratio of maxτ  to minτ . They [8] also introduced an 
analytical expression of the condition for the poses within 
the WST assuming no force and torque acting on the moving 

platform, as follows: max
7.,,2,1

7,,2,1

min

max
k

h

h
≤

⋅⋅⋅=

⋅⋅⋅=

µµ

µµ
(here, )(ANh = , 

)( 7654321 wwwwwwwA = , is the Jacobian matrix of this 
wire-driven PKM) and presented the condition for the 
boundary of the workspace. 

 
3.2.2  Procedure 

 
1) Give a certain index maxk ；  
2) Set each wire direction unit vector )16( ×iw  

)71( ≤≤ i , and  determine A , the Jacobian  matrix of this 
wire-driven PKM;  

3) Calculate the nullspace of A , supposing that 
)(ANh = ，if each element of  is greater than zero and 

satisfies the inequality: max
7.,,2,1

7,,2,1

min

max
k

h

h
≤

⋅⋅⋅=

⋅⋅⋅=

µµ

µµ
，then the 

pose is within the WST. 
 

3.3  Analysis of  WSS 
 

3.3.1 Eigenvalues Method 
 
For this wire-driven PKM, if )7,,3,2,1( ⋅⋅⋅=µµk is the 

stiffness of the thµ wire, and 'k is the stiffness per reciprocal 

unit length of the wire, we have ,0
'

µµ lkk ×= here µ0l is the 

original length of the thµ wire. Using the stiffness matrix of 
conventional PKMs, Verhoeven and Miller [8] defined the 
WSS, of a six DOF wire-driven PKM with seven wires, is 
the set of poses where six positive eigenvalues )61( ≤≤ vkev  
of stiffness matrix are all not less than the allowable 
minimum stiffness, mink , of the wires.  

 
3.3.2  Procedure 

 
1) If 'k is the stiffness per reciprocal unit length of the 

wire, mink is the allowable minimum stiffness of the wire, 

and µ0l is the original length of the thµ wire. And 

)7,,3,2,1( ⋅⋅⋅=µµk is the stiffness of the thµ wire； 

2) Set each wire direction unit vector )16( ×iw  
)71( ≤≤ i , and   determine A , the Jacobian  matrix of this 

wire-driven PKM;  
3) Calculate the nullspace of A , supposing that 

)(ANh = ; 
4)Determine the stiffness matrix of this wire-driven 

PKM as TAALkK 1' −= ,where )1(( 1'
0

1
0 µµ τ−− += kldiagL ，

in practice, the term µτ1'−k  used to be <0.5%. Thus, 
stiffness properties must be achieved by the geometrical 
arrangement； 

5) Calculate the six  positive eigenvalues )61( ≤≤ vkev  
of  the stiffness matrix K , if not only each element of h is 
greater than zero, but also min61 )(min kkevv ≥≤≤  is satisfied, 
then the pose is within the WSS. 

 
4.   Case Study 

 
Let us think of this wire-driven PKM mentioned in 

Figure 1, and a set of the following parameters of the 
manipulator: ,,,,, 22,1,21 ZRR BB ββ  ,, 21 rr ,1,Pβ 2,2 , Pz β , are 
given. When the reference point P  of the moving platform 
is located at )0,0,0,,0,0( PZ , the manipulator is obvious 
singular because the rank of the Jacobian matrix at this pose 
is less than six. So, the home pose is defined as 

0),(5 ZZmmYX PPP === , ,1o
R =ϕ  0== YP ϕϕ , where 

0Z  is set as -30mm. Here the workspace includes the 
position workspace and the orientation workspace.  

Let 300 −=Z mm, and give a set of the configuration 
parameters of the wire-driven PKM, which are denoted as 
Type 1 , as shown in Table 1.  

 
Table 1: Type 1 

1z  0 1Z  0 
r  60mm R  240mm 

1,Pβ  0 1,Bβ  0 

2z  40mm 2Z  240mm 

2,Pβ  0 2,Bβ  0 

2z  40mm 2Z  240mm 

2,Pβ  0 2,Bβ  o30−  
 
4.1  CASE  1：Determination of Controllable Workspace  

 
As shown in Table 2 and Figure 5, the results are carried 

out by the programming using Monte-Carlo technique under 
the Matlab environment according to the procedure 
mentioned in Section 2.1 (N denotes the number of the 
selected sample points ). 
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Table 2: Workspace ( 0>WTI ) of Type 1 

WTI  at the reference pose 0.5568 
Workspace free from singularity 

Position workspace ( 0,1 === YP
o

R ϕϕϕ ) 
),5( 0ZZYX PP ==  -40mm~40mm 

),5( 0ZZXY PP ==  -40mm~40mm 

)5( == PP YXZ  -200mm~0 

Orientation workspace  ( 0,5 ZZmmYX PPP === ) 

)0( == YPR ϕϕϕ  -25o~29o 

)0,1( == Y
o

RP ϕϕϕ  -50o~50o 

)0,1( == P
o

RY ϕϕϕ  -70o~70o 

 

     
Y-Z Plane(N=12000)                               X-Z Plane(N=12000)                    X-Y Plane (N=12000) 

( PX =5, 0,1 === YP
o

R ϕϕϕ )   ( PY =5, 0,1 === YP
o

R ϕϕϕ )     ( 0ZZ P = , 0,1 === YP
o

R ϕϕϕ ) 
 

    
 Position workspace (N=768000)  

( 0,1 === YP
o

R ϕϕϕ )   

Figure 5: The maps of controllable workspace 
 

4.2  CASE  2：Determination of WST  
 
Assuming 100/ minmaxmax == ττk ，the maps of position 

WST shown in Figure 6, are carried out by the programming 

using Monte-Carlo technique under the Matlab environment, 
according to the procedure mentioned in Section 2.2 (N 
denotes the number of the selected sample points ).

   
Y-Z Plane(N=12000)                 X-Z Plane(N=24000)                           X-Y Plane(N=40000) 

( PX =5, 0,1 === YP
o

R ϕϕϕ )   ( PY =5, 0,1 === YP
o

R ϕϕϕ )     ( 0ZZ P = , 0,1 === YP
o

R ϕϕϕ ) 

291Non Refereed White Paper



 

      
Position workspace (N=768000) 

( 0,1 === YP
o

R ϕϕϕ ) 

Figure 6: The maps of  WST 
 

4.3   CASE 3：Determination of  WSS  
 
Assuming that 1000' =k (N/mm), is the stiffness per 

reciprocal unit length of the wire, )7,,2,1(0 ⋅⋅⋅=µµl is the 

original length of the thµ wire, 180mm,180mm,180mm, 
197mm,197mm,197mm,197mm respectively. Then the 
average stiffness ava lkk ×= ' ( avl  is the average original 

length of the seven wires). mink is the allowable minimum 
stiffness of the wire, akk 10.0min = . 

The maps of WSS shown in Figure 7 are carried out by 
the programming using Monte-Carlo technique under the 
Matlab environment, according to the procedure mentioned 
in Section 2.3(N denotes the number of the selected sample 
points ). 

 

     
Y-Z Plane (N=12000)                                   X-Z Plane (N=12000)                      X-Y Plane (N=20000) 

   ( PX =5, 0,1 === YP
o

R ϕϕϕ )                     ( PY =5, 0,1 === YP
o

R ϕϕϕ )                   ( 0ZZ P = , 0,1 === YP
o

R ϕϕϕ ) 

        
Position workspace (N=768000) 

( 0,1 === YP
o

R ϕϕϕ ) 

Figure 7: The maps of  WSS  
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The results, shown in the tables and figures mentioned 
above, demonstrate that the determination of controllable 
workspace base on concept of  Vector Closure, WST based 
on Nullspace Method, and WSS based on Eigenvalues 
Method has been successfully carried out. In addition, in 
theory, the map of the WST is a closed set. But in practice, 
the map shown in Figure 6 is not the case, because the 
Monte-Carlo technique is an approximate algorithm. 
Meanwhile, if more random points are selected, the practical 
WS, WST and WSS will be closer to the theoretical ones. 
Also the fact is justified again that the maps of WST and 
WSS  are indeed within those of the controllable workspace. 

 
5   Conclusion 

 
 Mechanism design of this novel six degrees of freedom 

(DOF) wire-driven parallel kinematic manipulator(PKM) 
with seven wires was attained by changing several design 
variables. Workspace analysis of this six DOF wire-driven 
PKM was investigated in detail to show that controllable 
workspace based on concept of Vector Closure, WST based 
on Nullspace Method and WSS based on Eigenvalue Method. 
A case study was presented to demonstrate the application of 
the methodology to determine the controllable workspace, 
the WST and WSS using Monte-Carlo technique under the 
Matlab environment. 

The results show that there is a little difference between 
the practical workspace and the theoretical one. If more 
randomly points are selected and a simplier algorithm is used, 
the practical workspace will be closer to the theoretical one. 

If in the future work a required stiffness is reached by 
using internal forces among wires, the manipulator can be 
designed for large-scale flight simulators. A 3D CAD model 
of this manipulator is established by the authors, as shown in 
Figure 8. 

 

 
Figure 8: 3D CAD model of the wire-driven PKM 
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Abstract

Since most machining operations require a
maximum of five axes, tripod design is
becoming popular for the development of
parallel kinematic machines (PKMs). The
combination of a tripod with a gantry system
forms a five-axis machine with both large
workspace and dexterity. This paper is
focused on kinetostatic analysis and
optimization of a sliding-leg tripod unit. First,
a parametric kinematic model is developed
and constrained kinematic equations are
derived. Based on this, a flexibility model is
established considering the flexibility in the
sliding legs and the actuators. A global index
is introduced to characterize the tripod’s
compliance over the workspace. The method
of Generic Algorithms is applied for
structural optimization. Results of
optimization show that a tripod unit with a
smaller workspace would lead to a higher
stiffness.
  

1. Introduction

The recent trend in manufacturing is moving
towards high-speed machining (HSM). The
main thrust behind this is to machine the part
with a smooth surface finish. This would
ultimately eliminate finishing processes such
as grinding or polishing, and hence would
improve productivity and reduce costs. For
HSM, this requires the development of
machine tools with high dynamic
performance, improved stiffness and reduced
moving mass.

Parallel mechanisms appear to be a good
candidate and have been adopted to develop a
new type of machine tools, called parallel
kinematic machines (PKMs) [1-3]. Initial
development of PKMs involved simply
inverting the Stewart platform to have a
hanging-down configuration. The Stewart
platform based machine tools are called
hexapods and they have six axes. Since most
machining tasks require a maximum of five
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axes, tripod designs with three axes are
becoming popular. The combination of a
tripod with a gantry system forms a five-axis
machine with both large workspace and
dexterity.

Several tripod units proposed in the literature
have attracted attention from industry. The
most successful one is Tricept [4] from Neos
Robotics AB. This tripod unit is mainly
designed for heavy-duty cutting applications.
It can be mounted on different types of
machine frames. The Z3 Head [5] from
Cincinnati Machine is another type of tripod
unit designed for heavy-duty cutting
applications. The difference is that the
Tricept is designed with extensible legs while
the Z3 head is developed with fixed-length
actuators. The Georg V [6] from University
of Hannover is designed with fixed-length
actuators for light-duty applications.

This paper is focused on kinetostatic analysis
and optimization of a sliding-leg tripod unit
developed at the Integrated Manufacturing
Technologies Institute of National Research
Council of Canada [7]. As shown in Figure 1,
this unit was built in small scale as a toolhead
to be attached to a basic machine such as a
gantry system. In this paper, first, a
parametric kinematic model is developed and
constrained kinematic equations are derived.
Based on this, a flexibility model is
established considering the flexibility in the
sliding legs and the actuators. A global
compliance index is introduced to
characterize the tripod’s compliance over the
workspace. The method of Generic
Algorithms is applied for structural
optimization. Results of optimization show
that a tripod unit with a smaller workspace

would lead to a higher stiffness.

2. Kinematic Modeling

Figure 2 shows the tripod unit under study,
and it consists of three fixed-length legs that
slide along the guideways. Each leg is
connected on one end to the guideway by a
revolute joint and on the other end to the
moving platform by a spherical joint.

2.1 Kinematic Equations

As shown in Figure 2, the tripod has three
independent kinematic loops. Each contains
five vectors, ri h, bi, si and li and they satisfy
the following equation

iiii lsbhr ++=+ (1)

where ii rRr = , R is the rotation matrix, h =

[xc, yc, zc]
T is the vector representing the

position of the moving platform, bi is the
vector representing the position of the lower
end of the ith guideway attached to the base,
si is the vector representing the displacement
along the ith guideway, and li is the vector
representing the ith sliding leg.

It is necessary to point out that for a spatial
tripod, the degrees of freedom is 3, while the
order of the system is 6. In other words, the
tripod still has three linear and three angular
movements. However, three of the six
movements are dependent. Since the legs are
constrained by the revolute joints, this
generates three constraint equations, which
may be expressed as [7]

)( Id xfx = (2)

where xI and xd are independent and
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dependent variables.

2.2 Inverse Kinematics

To solve the inverse kinematics, equation (1)
is re-written as

l
ii

s
iiii ls uubhrR =−−+ (3)

where l
i

s
i uu and are the unit vectors of the

guideway and leg, respectively. By applying
the constraint of the fixed length of the
sliding leg, the problem of inverse kinematics
can be solved for the following equation

i
s
iiii ls =−−+ ubhrR (4)

2.3 Jacobian

Taking the time derivative of equation (1)
yields

iii
s
ii )]([s lrRvlu ⋅×+=⋅ ω& (5)

where T
zyx ] v, v,[v  =v  and ω = [ ωx, ωy,

ωz ]
T

. Let t = [vT, ωT]T, equation (5) can be
rewritten in the matrix form as

AtsB =& (6)

where [ ]321 s ,s ,s &&&& =s  is the vector of the

actuator speeds, and A and B are matrices
representing the inverse and forward
Jacobian of the mechanism and they are
defined as

















×
×
×

=
Tl

33
Tl

3

Tl
22

Tl
2

Tl
11

Tl
1

)()(

)()(

)()(

urRu

urRu

urRu

A (7)

),,(diag l
3

s
3

l
2

s
2

l
1

a
1 uuuuuuB ⋅⋅⋅= (8)

Let

ABJ 1-= (9)

Equation (6) can be rewritten as

Jts =& (10)

As mentioned before, the tripod has only 3
DOF, so this Jacobian J is 3 by 6 and cannot
be inverted. To take into consideration the
constraints, equation (2) is needed. It can be
shown that the Jacobian pertaining to the
independent variables is in the following
form [9]

321
1

I MMAMBJ -= (11)

where M1 is the transformation matrix
between x&  and t, M2 is a sorting matrix and
M3 is the matrix that relates the dependent
velocities to the independent velocities.
Jacobain JI is 3 by 3 matrix and can be
inverted if not singular for the following
equation

IIxJs && = (12)

3. Flexibility Modeling

It can be shown that the wrench w acting on
the moving platform is related to the moving
platform deformation δx as [8]

xKw δ= (13)

where the generalized stiffness matrix K is
given as
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JKJK T=    (14)

Equation (13) can be re-written in terms of
compliance as

wCx  =δ (15)

where C is the generalized compliance matrix,
and C = K-1.
  
It should be noted that for the tripod under
study, if there exist several types of
flexibilities in the kinematic loops, their
compliances should be additive, but not their
stiffness. Suppose that stiffness were additive
and one of the flexibilities under
consideration were dropped, the total system
stiffness would be infinite, which obviously
is not true. On the other hand, under the
compliance addition model, the total system
compliance would be reduced, which is
reasonable.

In this paper, three types of flexibilities are
considered, including axial and bending
flexibility in the sliding legs and flexibility in
the actuators.

3.1 Leg Axial Compliance Matrix

The compliance matrix considering the leg
axial deformation can be obtained as [9]

T
aaaa JCJC = (16)

where

( ) 1
a32a

−= J'MMJ (17)

J'a = AM1M2M3 (18)
















=

a

a

a

a

k/100

0k/10

00k/1

C (19)

and ka represents the axial stiffness of the
fixed-length leg.

3.2 Leg Bending Compliance Matrix

The compliance matrix considering the leg
bending deformation can be obtained as [9]

T
bbbb JCJC = (20)

where

( ) 1
b32b

−= J'MMJ (21)

J'b = AbM1M2M3 (22)
















=

b

b

b

b

k/100

0k/10

00k/1

C  (23)

and kb represents the bending stiffness of the
fixed-length leg.

3.3 Actuator Compliance Matrix

The compliance matrix considering the
actuator deformation can be obtained as [9]

T
tttt JCJC = (24)

where

( ) 1
t32t

−= J'MMJ (25)

J't = B-1AM1M2M3 (26)
















=

t

t

t

t

k/100

0k/10

00k/1

C (27)

and kt represents the actuator stiffness.
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3.4 Total Compliance Matrix

The total system compliance matrix is the
addition of three compliance matrices

tba CCCC ++= (28)

3.5 Compliance Mapping

The compliance map shows the compliance
changes over the workspace. Usually, the
diagonal values of the compliance matrix are
used which represent the deformation caused
by the forces and moments along and about
the Cartesian coordinates [8]. Figure 3 shows
a typical compliance mapping of the tripod.

3.6 Global Compliance

The global compliance is characterized by an
index over the entire workspace. Since the
compliance changes inside of the workspace,
the mean value and standard deviation of the
trace of the compliance matrix may be used
to evaluate the compliance and its variation
over the workspace. These two measures are
defined as

))(mean(trace C=µ (29)

))(trace(std C=σ (30)

The mean value represents the average
compliance of the tripod over the workspace,
while the standard deviation indicates the
compliance fluctuation relative to the mean
value. In general, the lower the mean value
the less deformation, and the lower the
standard deviation the more uniform the
flexibility distribution over the workspace.

4. Optimization

4.1 Generic Algorithms (GA)

For the tripod under study, optimization
involved finding the optimal workspace and
stiffness. The method of generic algorithms is
applied for optimization.

Genetic algorithms start with a set of
solutions (represented by chromosomes)
called population. Solutions from one
population are taken and used to form a new
population. This is motivated by a hope that
the new population will be better than the old
one. The solutions chosen to form new
solutions (offspring) are selected according to
their fitness - the more suitable they are the
better chances they will reproduce.

4.2 Basic Procedure of GA

Genetic algorithms consist of following basic
operations:

1. Initial population - generate random
population of n chromosomes (suitable
solutions for the problem)

2. Fitness - evaluate the fitness of each
chromosome in the population

3. New population - create a new
population by repeating following steps
until the new population is complete

4. Selection - select two parent
chromosomes from a population
according to their fitness (the better the
fitness, the bigger chance to be selected)

5. Crossover - with a crossover probability,
cross over the parents to form new
offspring (children). If no crossover is
performed, offspring are an exact copy of
parents.

6. Mutation - with a mutation probability
mutate new offspring at each locus
(position in chromosome).

7. Accepting - place new offspring in a new
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population
8. Replacing – use new generated

population for a further run of algorithm
9. Test - if the end condition is satisfied,

stop, and return the best solution in the
current population

10. Loop - go to step 2

4.3 Implementation

There are five basic structural parameters for
this tripod: base radius Rb, movable platform
radius Rp, leg length L, guideway length Smax,
and the angle between guideway and base β.
In this optimization, Rb and Smax are fixed as
constants (Rb = 141.76mm, Smax = 95.25mm),
but Rp, L and β are variables. The vector of
optimization variables is therefore

]   L,,R [ p β=o (31)

Their bounds are Rp ∈ [75, 85] mm, L ∈ [200,
230] mm, β ∈ [65, 75] degree. There are three
stiffness constants, ka = kb = kt = 1000 N/mm.

The optimization variables are encoded into
30 bit binary numbers. The Roulette wheel
method is adopted as the selection method.
Crossover possibility Pc is 0.85, mutation
possibility Pm is 0.0075, population size is 30
and maximum generation size is 100.

The objective of optimization is to achieve
the maximum workspace and minimum
compliance.

For workspace, the minimum reachable yaw
angle [10] is chosen to evaluate the
workspace size, since the tool attached to the
tripod is required to orient freely in a cone
with a certain apex angle. For compliance,
the trace of the global compliance matrix is

used. Combining the two, the fitness equation
can be expressed as

iii W/Wf θ+µ= θµ (32)

where µi represents the average compliance
trace for the ith population; θi represents the
minimum reachable yaw angle for the ith
population; and Wµ and Wθ are weighting
factors.

If only the workspace is of concern, then Wµ

= 0. If only the stiffness is of concern, then
Wθ = 0.

4.4 Results

Table 1 shows the results of the compliance
optimization. After adjustment of the
structural variables, both the mean value and
the standard deviation of the system
compliance were reduced, meaning that the
stiffness is increased and its variation over
the whole workspace is decreased. The
improvement of the stiffness is about 16%.
However, the workspace after compliance
optimization becomes smaller. Figure 4
shows the fitness statistics.
  
Table 2 shows the results of the workspace
optimization. After adjustment of the
structural variables, the workspace size is
significantly enlarged, but the mean value
and the standard deviation of the system
compliance is increased. This indicates that
the stiffness is decreased and its variation
over the whole workspace is increased. The
improvement of the workspace size is about
94%. Figure 5 shows the fitness statistics.

Though the workspace size and the stiffness
can be improved, the workspace size is more
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sensitive to structural parameters. The results
also show that the workspace size and the
stiffness cannot be optimized at the same
time. Larger workspace always results in
higher compliance (lower stiffness).

5. Conclusions

In this paper a parametric kinematic model is
developed and constrained kinematic
equations are derived. Based on this, a
flexibility model is established considering
the flexibility in the sliding legs and the
actuators. A global index is introduced to
characterize the tripod’s compliance over the
workspace. The method of Generic
Algorithms is applied for structural
optimization. Results of optimization show
that a tripod unit with a smaller workspace
would lead to a higher stiffness.
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Table 1. Compliance optimization results.

Structural Variables Workspace Compliance
Rp (mm) L (mm) β (deg.) θ (deg.) µ (mm/N) σ (mm/N)

Initial 75 200 65 35.0496 0.006572 0.001443
Optimized 84.2953 229.7621 74.9241 20.5907 0.005545 0.000316
Constraint θ >20

Table 2. Workspace optimization results.

Structural Variables Workspace Compliance
Rp (mm) L (mm) β (deg.) θ (deg.) µ (mm/N) σ (mm/N)

Initial 85 230 75 17.0604 0.005545 0.000316
Optimized 82.2788 225.3975 69.6152 31.4749 0.005552 0.000333
Constraint µ<0.006

Figure 1 A hybrid machine combining a tripod with a gantry.
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Figure 2 Schematic of a tripod

Figure 3 Compliance mapping
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Abstract:
This is very much a “work in progress”. The intent is to

explain, in a clearandsimpleway, whatkinematicmappingis in
termsof elementaryhomogeneousmatrix transformationswhich
“move” pointsandlinesin theplane. Relationshipof theimage
spacecoordinatesto thepoleof displacement,theinvariantpoint
of a planarmotion,is derived.

1 Notions

For planardisplacementsconsiderthetransformationswhichex-
pressthe homogeneouscoordinatesof points and lines in the
moving, endeffector frameEE premultipliedby a transforma-
tion matrix andconvertedto their homogeneouscoordinatesin
thefixedframeFF. Pointsaretransformedas���� � � ��	�
������������������������������������������������ �������� � ��

Linesaretransformedas���� �  �� � ���! � ! �� ! ��! �� ! ��� ! ���! �� ! ��� ! ��� �� ��#"$% ��
Thecoefficientswill beevaluatedby usingthreeidealelements
in theEEframesandtheircorrespondingcoordinatesin FF. Then
thesecoefficients will be convertedand expressedin termsof
four homogeneousBlaschke-Gr̈unwald coordinates,a mapping
in the kinematicimagespace.This is an abstractprojective 3-
spacewhereinapoint representsadisplacmentof arigid bodyin
theplane. & �('*)+�  )+� � )+� �-,. &0/21436527 / ) � 5�8:9;7 /=<?> 143@527 / )� 1A365 7 /CBD> 5�8:9 7 / ) /E5�8:9 7 / ,

2 The Point Transformation

Idealpointelementsarechosenastheorigin,F ��HG� >
�� � �� ���I�J��I��������I�@���I���������I�@���I����� �� ��KGLL ��NM� � � FPO � �Q � F � O � �Q � F >

thepoint at infinity which closesthe

�
-axis,F �� L1A365 75�8R9 7

�� � ��������J��I�������Q��@���I��������Q��@���I����� ��S�� L GL �� M���� � L O �@��� � F 143@5 7 O �@��� � F 5�8R9 7
andthepointat infinity whichclosesthe � -axis,F �� L< 5�8R9 71A365 7

�� � ���� � � �� � ��� �� � ��� � ������������������� ����� LL G �� M���� � L O ����� � < F 5�8:9 7 O ����� � F 14365 7
where

F
is anarbitraryconstant.PopulatingT �@UWV4X with thesere-

sultsandmakingthetangenthalf-anglesubstitutions1A365 7 � G <KY�Z 9 �\[ �G B?Y�Z 9 � [ � O 5�8:9 7
� / Y�Z 9 [ �G BHY�Z 9 � [ �

andmultiplying throughby ] G B^Y�Z 9 � [ �`_ , thenby
14365 � [ �

produce

T ��UWV4X � F �� ] 143@5 � [ � B 5�8:9 � [ � _ L� ] 1A365 � [ � B 5�8R9 � [ �a_ ] 1A365 � [ � < 5�8R9 � [ �a_> ] 14365 �\[� B 5�8:9 � [ �b_ /E1A365 [ � 5�8:9 [ �L< /E1A365 [ � 5�8:9 [ �] 143@5 � [ � < 5�8:9 � [ � _
��
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which becomes,aftersubstitutionfor
& � ' )��  )@� � )�� � ,

and
simplifying anddividing throughby 4.

T ��UWV4X � �� � �' B � �� L L/ ] �('A� � B �  � � _ � �' < � �� < / �('4� �< / ] �('4�  < � � � � _ / �c'A� � � �' < � ��
��

This is easilyinvertedandaftermultiplying by ] � �' B � �� _ �
T ��UWVAXed  � �� � �' B � �� L L< / ] �c'f� � < �  � � _ � �' < � �� / �('4� �/ ] �('A�  B � � � � _ < / �('4� � � �' < � ��

��
Themetricis obtainedas T � UWV X T � UWV X d  .�� ] � �' B � �� _ � L LL ] � �' B � �� _ � LL L ] � �' B � �� _ �

��
3 The Line Transformation

Ideal line elementsarechosen.The first is the invariantline at
infinity. F ��KGLL �� � ���! � ! �� ! ��! �Q ! ��� ! ���! �Q ! ��� ! ��� �� ��gGLL ��NM

! � � FPO ! �Q � L O ! �� � L
Then the coordinatesof the

�
-axis in FF are formed with the

origin andthepointat infinity.hhhhhh
� � �G � >L 1A365 7 5�8:9 7

hhhhhh
M

& � 5�8:9 7 <?> 143@5 7 ) < 5�8:9 7 ) 1A365 7 ,
F �� � 5�8R9 7 <H> 5�8:9 7< 5�8R9 7143@5 7

�� � ��i! � ! �� ! ��! �� ! ��� ! ���! �� ! ��� ! ��� �� �� LL G ��NM! �� � F ] � 5�8R9 7 <?> 14365 7 _ O ! ��� � < F 5�8:9 7 O ! ��� � F 1A365 7
Finally the coordinatesof the � -axis in FF are found with the
origin andthepointat infinity.hhhhhh

� � �G � >L < 5�8R9 7 14365 7
hhhhhh
M

& � 143@5 7 BN> 5�8R9 7 ) < 14365 7 ) < 5�8R9 7 ,F ���� 143@5 7 BN> 5�8R9 7< 14365 7< 5�8:9 7
�� � �� ! � ! �� ! ��! �Q ! ��� ! ���! �Q ! ��� ! ��� ��S�� L< GL ��DM

! �� � < F ] � 143@5 7 BD> 5�8R9 7 _ O ! ��� � F 1A365 7 O ! ��� � F 5�8R9 7
Note

$ � < G makingline normal in EE compatiblewith that
in FF. PopulatingT ! UWV X with theseresultsandmakingthetangent
half-anglesubstitutionsandmultiplying throughby ] G B*Y�Z 9 � [ �`_ ,
thenby

1A365 �\[�
produce

T ! UWV X � F �� 1A365 � [ � B 5�8R9 � [ �LL
< � ] 143@5 �\[� B 5�8:9 � [ � _ B / > 1A365 [ � 5�8:9 [ �143@5 � [ � < 5�8:9 � [ �/214365 [ � 5�8R9 [ �/ � 143@5 [ � 5�8R9 [ � <?> ] 1A365 �\[� < 5�8R9 � [ �a_< /214365 [ � 5�8R9 [ �1A365 �j[� < 5�8R9 � [ �

��
which,aftersubstitutionfor

& � ' )+�  )6� � )k� � ,
, simplification

anddividing throughby 4, becomes

T ! UWVAX � �� � �' B � �� < / ] �('A� � < �  � � _L � �' < � ��L / �c'f� �/ ] �('f�  B � � � � _< / �('4� �� �' < � ��
��

This is easilyinvertedandaftermultiplying by ] � �' B � �� _ �
T ! UlV X d  � �� � �' B � �� / ] � ' � � B �  � � _L � �' < � ��L < / � ' � �< / ] � ' �  < � � � � _/ � ' � �� �' < � ��

��
Thenthemetric T ! UWVAX T ! UlVfXmd  � T ��UlV4X T ��UWVAXed 
It is notedwith satisfactionthat T ! UlV4X � T:T ��UWVAX d  Xon .

4 Examples

ExaminingFig. 1, oneseesa coordinateframepair with� �qp O > � G / O 143@5 7 / �sr L�t u O 5�8:9 7 / �vr L�t G
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Transforming points and lines in the plane:

An exercise in image space coordinates

(20)XIS

p{-45:9:5}EE

p{-927.916702:20.362:45.571}FF

Figure1: FramesandElements

Substitutingthesein the definitionsof the imagespacecoordi-
natesanddividing by

/ r Lbt G& � ' )+�  )+� � )+� � , � &xw ) < Gfy ) G p ) G ,
Thenfor thepoint z
T � UWV X � �� w � B G � L L/ ] w({ G p < Gfy { G _ w � < G � < /^{�w({ G< / ] < wc{ Gfy < G p { G _ /c{�w({ G w � < G �

��
CalculatingT � UWV X anddividingby2 andusingthepoint z in frame
EE �� GG w t |/ |bt / ��D� �� }| pG w G ��N� ��~} L Ly L y < w|kL w y �� �� GG wp ��

Thenfor theline �
T ! UWV X � �� w � B G � < / ] w({ G p B GAy { G _L w � < G �L /c{�w({ G/ ] < w({ GAy B G p { G _< /c{�w({ Gw � < G �

��
Calculating T ! UlVAX anddividing by 2 andusingtheline � in frame
EE �� < u }6�/ Gy � �� � ���} < | p < / yL y < wL w y ��S�� < y }u } ��
5 Pole,Half-Angle and ImageSpaceCoordinates

Thehomogeneousimagespacecoordinatesof planarkinematic
mappingmay be derivedusingthe following parameterswhich
descibeplanardisplacementof a rigid body. Referto Fig. 2.

� Cartesiancoordinatesof a referencepoint, say, the origin] L O L _ in FF which is ] L O L _ in EE andbecomes] � O > _ under
displacementin FF and� The angle 7 betweenany line in FF and its imagein EE
afterdisplacement

a=8

u/t

v/t

x/w

y/w

4

3
5

b=12

-14

-14

18

18

P I

(20)XISP

The displacement pole:

an invariant point under 

planar displacement

P I (x/w,y/w)FF=P  (u/t,v/t)EE=(-14,18)I

/2

Figure2:- DisplacementPole, z��
NoticethattheCartesiancoordinatesof apoint z � , thedisplace-
mentpole,maybeexpressedin termsof

� O > O 7 andthesecoor-
dinatesareidenticalin FF andEE.z � ] ��� � O � � � _ � z � ] � � � O � � � _ ��� �/ < >/ 143 Y 7 / O � / 1A3 Y 7 / B >/��
Thehomogeneouscoordinatesof z � in FF are

& � ) � ) � , and
in EE they are

& � ) � ) � ,
. In termsof

� O > O 7 the Cartesian
coordinatesof z�� maybehomogenizedas� � /�< >/ 143 Y 7 / ) � / 143 Y 7 /CB >/ ) G��
It doesnot matterthat theorderinghasbeencircular left shifted
as
& � ) � ) � , and

& � ) � ) � , in therepresentationabove. This
reorderinghasbeendoneto minimizesubsequentsequenceshuf-
fling below while proceedingto theultimategoal to presentthe
homogeneousplanarimagespacecoordinates,orderedas they
wereinitially introduced.But thesearejust thecoordinatesof an
ordinarypoint. A point in theCartesiankinematicimagespace,
whichmusthavethreecoordinatesto representthethreedegrees
of freedomof displacementin theplane,is obtainedby dividing
by
143 Y [ � . � � / Y�Z 9 7 / < >/ O � / B >/ Y�Z 9 7 / O Y�Z 9 7 /��

To makethisaprojective3-space,fourhomogeneouscoordinates
arerequired� G ) � /�Y�Z 9 7 /=< >/ ) � /iB >/jY�Z 9 7 / ) Y�Z 9 7 / �
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Multiplying by
/E1A365 7 producestheimagespacecoordinates

& � ' )+�  )+� � )+� � ,. &0/21436527 / ) � 5�8:9;7 / <?> 143@527 / )� 1A365�7 / BD> 5�8:9�7 / ) /E5�8:9�7 / ,
Onemayconductthefollowing simpleverificationupontheex-
ampleshown in Fig. 2.� �qp O > � G / O 1A365�7 / � r Lbt u O 5�8R9;7 / � r L�t G O 143 Y 7 / � w� � / < >/ 1A3 Y 7 / O � / 143 Y 7 / B >/����� p/ < G // {�w O p / {�w B G //;� � ] < Gfy O G p _
6 Conclusion

Recentlyplanarkinematicmappinghasbeenappliedwith very
encouragingresultsto� A unified approachto solving, in compactsymbolicform,

thedirectkinematicsof all posiblevarietiesof three-legged
parallelplatforms,(Zsombor-Murrayetal., 2002),� Solving the five precisionposedesignproblem(Hayes&
Zsombor-Murray, 2002)usinga generalalgorithmwhich,
whenformulatedin theprojective imagespace,will reveal
the mechanism,whethertwo-joint dyad,revolute four-bar,
slider-crank or even elliptical trammel, without resort to
separateformulationasdocumentedin (McCarthy, 2000).

The purposeof this shortarticle is to describe,onceagain,the
natureof the projective planarimagespace;possiblyin a more
simpleway, palatableto a wider audienceof engineeringkine-
maticianswho areyet reluctantto adaptthesemethodsto their
own researchandteaching.To those,who feel that the field of
planarkinematicsis a well workedover field with little new to
offer, it is submittedthata similar rework of sphericalandspa-
tial mappingwill helpus to effectively attackmorechallenging
problems.
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Abstract: This paper addresses the synthesis of a novel reaction-
less spatial 6-DOF parallel mechanism using four-bar linkages
without any counter-rotations. The mechanism is first described
and its kinematics is discussed. A numerical example of the re-
actionless 6-DOF mechanism is given in this paper and, with the
help of the dynamic simulation software ADAMS, it is shown that
the mechanism is reactionless for any trajectory.

1 Introduction

Parallel mechanisms are defined as architectures in which the
moving payload is connected to the fixed base by multiple kine-
matic chains. Each chain can be considered as one mechanism
and is a system with several bars, joints and a base.

Parallel mechanisms are excellent candidates for advanced
robotic applications by virtue of their low moving inertia, high
stiffness, high dexterity, compact size and high power to weight
ratio. However, similarly to other robotic devices, they exert
forces and moments on their base while moving, causing fatigue,
vibration, noise and perturbations in the supporting structure of
the mechanism.

A mechanism is said to bereactionless or dynamically bal-
anced if, for any motion of the mechanism, there is no reaction
force and moment at its base at all times. Since dynamic balanc-
ing is always accompanied with static balancing, dynamic bal-
ancing means actually both static and dynamic balancing.

The balancing of mechanisms has been an important re-
search topic for several decades (Berkof and Lowen, 1969;
Lowen et al. , 1983; Dresiget al. , 1998; Kochev, 2000). Ex-
tensive studies on the dynamic balancing of planar linkages
(Berkof, 1973; Kochev, 1990a; Bagci, 1992; Gao, 1989) and
some research works related to the complete balancing of spa-
tial linkages with only one degree of freedom (Bagci, 1983;
Yu, 1987a,b) have been presented in the literature. Some au-
thors have addressed the trajectory planning of manipulators in

order to generate reactionless trajectories or minimize distur-
bances (Papadopoulos and Abu-Abed, 1996; Papadopoulos and
Dubowsky, 1991; Kochev, 1990b; Dubowsky and Torres, 1991;
Legnaniet al. ,1999). However, the approaches based on trajec-
tory planning are only suitable for some special applications. In
order to obtain dynamically balanced mechanisms, some authors
have used counter-rotations — additional mechanisms designed
to balance the shaking moments of the mechanisms— such as
additional balancing links (dyads, triads or idler loops), fixed-
axis-gear-inertia counterweights and planetary-gear-train-inertia
counterweights (Bagci, 1982, 1992; Yu, 1987a, 1988; Gao, 1989,
1991; Ye and Smith, 1994). However, adding counter-rotations
to a mechanism increases its complexity and can reduce its prac-
ticality significantly. To avoid the use of counter-rotations for
the complete balancing of parallel mechanisms, Ricard and Gos-
selin (2000) have focused on a planar 4-bar linkage and obtained
the complete balancing of the linkage in the plane as a set of
constraints on the geometric and inertial parameters of the links.
The dynamically balanced 4-bar linkages without any counter-
rotation have been stacked up to synthesize reactionless planar 3-
DOF parallel mechanisms (Ricard and Gosselin, 2000) and reac-
tionless spatial 3-DOF parallel mechanisms (Coteet al. , 2001).
However, since the reactionless four-bar linkages are effective
in a plane, the stacked reactionless mechanisms — used as legs
to synthesize planar or spatial 3-DOF mechanisms — can only
move in that plane. Hence, these reactionless four-bar linkages
cannot be directly used to synthesize reactionless spatial 6-DOF
mechanisms. Wu and Gosselin (2002) have obtained dynami-
cally balanced four-bar linkages undergoing spatial motion and
synthesized a reactionless spatial 3-DOF mechanism which can
be used for the development of spatial reactionless multi-degree-
of-freedom — having up to 6-DOF — mechanisms or manipula-
tors.

In this paper, two basic reactionless planar four-bar linkage
mechanisms are first introduced. A spatial 6-DOF parallel mech-
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anism using four-bar linkages without any counter-rotations is
then synthesized. The geometry of the mechanism is briefly in-
troduced and the solutions of its kinematic problems are outlined.
Finally, a numerical example of the reactionless 6-DOF mecha-
nism is given and the dynamic simulation software ADAMS is
used to show the reactionless property of the mechanism.

2 Basic Reactionless Planar Four-Bar Linkage Mechanisms
Without Counter-rotations

In the literature, two basic mechanisms — a single planar dynam-
ically balanced four-bar linkage and a planar composite mecha-
nism with a pair of dynamically balanced four-bar linkages —
have been presented (Ricard and Gosselin, 2000; Wu and Gos-
selin, 2002). For a single planar four-bar linkage (Fig. 1), the

conditions for dynamic balancing in the plane are written as fol-
lows:

ε = −1, d = l2, l3 = l1,

r2 = l2(1−
m1r1
m2l1

), r3 =
m2r2l3
m3l2

,

k2 =

√
m2r2(l2 − r2)−m1k2

1 −m1(r21 + r1l1)
m2

,

k3 =

√
−m3r3(l3 + r3) +m1k2

1 +m1(r21 + r1l1)
m3

(1)

whereε is the branch index (assembly mode) of the four-bar link-
age,mi andli are the mass and length of theith bar andd is the
distance between the two joints on the fixed base as indicated
in the figure. The position of the center of mass of bari is de-
scribed by parameterri. Moreover,θi is the angular position of
bari with respect to theX axis,ki is the radius of gyration of the
ith bar with respect to its center of mass. Variablesm1,m2,m3,
l1, l2, r1 andk1 (or k2) are the independent design parameters
for the reactionless four-bar linkages.

Additionally, from the kinematic constraint equations of the
four-bar mechanism in Fig. 1, one can write the following equa-
tions which are used below.

cos θ1 =
(l21 + l22) cos θ3 + 2l1l2
l21 + 2l1l2 cos θ3 + l22

(2)

sin θ1 =
(l21 − l22) sin θ3

l21 + 2l1l2 cos θ3 + l22
(3)

θ̇3 =
sin θ1 cos θ2 − cos θ1 sin θ2
cos θ2 sin θ3 − sin θ2 cos θ3

θ̇1 (4)

A reactionless four-bar linkage behaves as a rigid body mov-
ing in a plane. Hence, it can be mounted on the moving link (the
third or first bar) of another planar four-bar linkage — taking
the moving link as its base link — to synthesize a multi-degree-
of-freedom reactionless planar mechanism. However, since sin-
gle reactionless four-bar linkages are effective in the plane, the
stacked reactionless mechanisms can only move in that plane.
Furthermore, since it is impossible for a single planar dynami-
cally balanced four-bar linkage to keep a constant inertia tensor
while moving as a rigid body, it cannot be dynamically balanced
for spatial motion (Wu and Gosselin, 2002). Therefore, a planar
composite mechanism composed of a pair of planar dynamically
balanced four-bar linkages has been introduced (Fig. 2) for this
purpose. The two dynamically balanced four-bar linkages are ar-
ranged perpendicularly. The base links and the first bars of the
two mechanisms are fixed perpendicularly respectively. Hence,
the two mechanisms move simultaneously (namely with same
values ofθ1, θ2 andθ3) if the lengths of the corresponding bars
of the two mechanisms are equal or have the same ratio. This
composite mechanism has one degree of freedom. In the no-
tation of Fig. 2, the first index of the subscript is used for the
number of the bar, while the second index for the number of the
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mechanism. Clearly, the composite mechanism is reactionless in
the plane if the base links are fixed to the ground. When the base
links are free for spatial motion, the conditions for obtaining a
composite mechanism with constant and principal inertia tensor
relative to the local frameX, Y , Z with origin at its center of
mass are written as follows.

li2 = uli1 (5)

mi2 = vmi1 (6)

v =
1
u2

(7)

Iyytb = Ixxtb (8)

whereu and v represent respectively the ratios of the lengths
and masses of the corresponding bars of the two mechanisms,
while Ixxtb andIyytb stand for the total moments of inertia of the
two base links relative to the global frameX,Y . The conditions
(5)–(7) imply that the principal moments of inertia — relative
to their center of mass — of the corresponding bars of the two
mechanisms should be equal. The composite mechanism with a
fixed center of mass and a constant and principal inertia tensor
behaves as a rigid body while undergoing spatial motion.

In the above two basic mechanisms, there are no counter-
rotations and only counterweights are required. With these two
basic mechanisms, reactionless multi-degree-of-freedom mech-
anisms can be synthesized according to the synthesis princi-
ples and constraint conditions. When stacking the mechanisms,
a reactionless four-bar linkage or a composite mechanism is
mounted on the third bar of another four-bar linkage. In doing so,
it is clear that in order to obtain a reactionless synthesized mecha-
nism in the plane of the four-bar linkage, the resulting mass, cen-
ter of mass and radius of gyration relative to the resulting center
of mass of the attached mechanism and the third bar should meet
the requirements of (1) and the resulting center of mass should
be situated on the axis of the third bar of the four-bar linkage
and in the plane. Fig. 3 schematically shows the synthesis of a
reactionless spatial 3-DOF mechanism composed of these two
kinds of mechanisms. Two planar four-bar linkages are stacked
in the horizontal plane, while a composite mechanism is rigidly
attached on the third bar of a planar four-bar linkage in the verti-
cal plane.

3 Synthesis of a spatial 6-DOF mechanism using planar
four-bar linkages

The spatial 3-DOF mechanism mentioned above can be used as a
leg to synthesize spatial multi-degree-of-freedom — having up to
6-DOF — mechanisms or manipulators. The end-effector point
of the 3-DOF mechanism is attached to the mobile platform us-
ing either a spherical or a Hooke joint, depending on the number
of legs used and the desired number of degrees of freedom for the
mechanism. These factors also determine the number of joints to
be actuated for each leg. A 6-DOF manipulator or mechanism
can be obtained using only three legs and two actuators for each

Figure 3: Synthesis of a spatial 3-DOF mechanism using four-
bar linkages.

Figure 4: CAD model of a spatial 6-DOF parallel mechanism.

leg and spherical joints to connect legs to the mobile platform.
The 6-DOF mechanism is schematically represented in Fig. 4.
The 6-DOF mechanism is composed of three identical legs con-
necting the base to a common thin platform. Each of the three
legs is a spatial 3-DOF mechanism (Fig. 3).

3.1 Inverse Kinematics

A fixed reference frameO – xyz is attached to the base of the
mechanism and a moving coordinate frameO′ – x′y′z′ is at-
tached to the moving platform (Fig. 5). Moreover, the points of
attachment of the three legs to the base are notedBi, i = 1, 2, 3
and the points of attachment of all legs to the platform are noted
Pi, i = 1, 2, 3. One can then write

pi = p + Qp′
i (9)
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Figure 5: Schematic representation of one leg of the spatial 6-
DOF parallel mechanism.

wherepi andp are respectively the position vectors of pointPi

andO′ expressed in the fixed coordinate frame. Furthermore,Q
is the rotation matrix corresponding to the orientation of the plat-
form of the mechanism with respect to the base coordinate frame
— usually written as a function of the three Euler angles repre-
senting the three degrees of freedom in rotation of the platform
— and the components of the above defined vectors are noted as

p =

xy
z

 , pi =

xi

yi

zi

 , p′
i =

x′iy′i
z′i

 , i = 1, 2, 3 (10)

Taking theith leg mechanism into account, one can then write

pi = bi + d1i + d2i + lei + d3i + rpi (11)

with

bi =

x0i

y0i

z0i

 , d1i =

 d1 cosψi

d1 sinψi

0

 , d2 =

−d2 cosα1i

−d2 sinα1i

0



lei =

 le cosα2i

le sinα2i

0

 , d3i =

 d3 cosβ cosα2i

d3 cosβ sinα2i

d3 sinβ



rpi =

−rp cosα3i cosα2i

−rp cosα3i sinα2i

−rp sinα3i

 (12)

where

α1i = θ31i + ψi (13)

α2i = θ31i + θ32i + ψi (14)

α3i = θ33i + β (15)

whereβ is the angular position of the center of mass of the com-
posite mechanism shown in Fig. 2 and the first index of the sub-
script of a variable with three indexes of subscript (i.e.,θ31i)
stands for the number of the bar, the second index for the number
of the four-bar linkage and the third one for theith leg. Substi-
tuting all the vectors in eq. (12) and eqs. (13) – (15) into eq. (11)
leads tox0i + d1 cosψi − d2 cosα1i +Ai cosα2i

y0i + d1 sinψi − d2 sinα1i +Ai sinα2i

z0i + d3 sinβ − rp sinα3i

 =

xi

yi

zi

 (16)

where

Ai = le + d3 cosβ − rp cosα3i (17)

From the above equation, two solutions forα3i, i.e.,θ33i —
obtained from thez component — and four solutions forα1i and
α2i, i.e.,θ31i andθ32i are obtained. Then, from eqs. (2) and (3),
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θ11i, θ12i andθ13i — the joint coordinates of the first bars of the
three four-bar linkages in theith leg — are finally obtained.
For the velocity analysis, one can write

ṗi = Jiθ̇i (18)

where θ̇i = (θ̇11i, θ̇12i, θ̇13i)T and Ji is the Jacobian matrix,
which can be written as follows

Ji =

 B1i(d2s1i −Ais2i) −AiB2is2i rpB3ic2is3i

−B1i(d2c1i +Aic2i) AiB2ic2i rpB3is2is3i

0 0 −rpB3ic3i


wherecji andsji representcosαji andsinαji respectively, and

Bji =
sin θ1ji cos θ2ji − cos θ1ji sin θ2ji

cos θ2ji sin θ3ji − sin θ2ji cos θ3ji
, j = 1, 2, 3

Hence the actuated joint velocities can be obtained by solving
the linear system of equations given in eq. (18).

3.2 Direct Kinematics

The direct kinematic problem of the resulting 6-DOF parallel
mechanism using planar four-bar linkages can be shown to be
equivalent to direct kinematics of the existing parallel mecha-
nisms or manipulators — e.g., mechanism with three prismatic
legs (RRPS chains) and TSSM mechanism — for which the solu-
tion has been shown to be reducible to a 16th-order polynomial
equation (Merlet, 1992; Nanuaet al. , 1990; Ebert-Uphoff and
Gosselin, 1998).

4 Design of a Reactionless Spatial 6-DOF mechanism Using
Planar Four-bar Linkages

In order to simplify the design of reactionless spatial multi-
degree-of-freedom parallel mechanisms, only dynamic balanc-
ing for each detached leg mechanism is considered indepen-
dently, when the platform is replaced by point masses. The point
masses must have the same mass, the same center of mass and
the same moments of inertia with respect to any coordinate frame
origin at its center of mass as the platform. For the spatial 6-DOF
parallel mechanism of this paper, the mass and moments of in-
ertia of the platform are distributed on each of the attachment
points of the legs and replaced by three point massesmpm sym-
metrically arranged on a plane (Fig. 6). It can be shown that the
moments of inertia in any frame with thez axis orthogonal to the
plane are equal and can be written as follows

Ixx =
3
2
mpmr

2
pm (19)

Iyy = Ixx (20)

Izz = 3mpmr
2
pm (21)

whererpm is the distance between the point mass and the cen-
troid of the platform. Sincempm is equal to one third of the

m m

m

pm pm

pm

o’

rpm

x’

y’

pmr
pmr

Figure 6: Determination of the three point masses.

mass of platformmpl, rpm is equal to the radius of gyration of
the platform.

From eqs. (19) – (21), it can be found that for any plat-
form of symmetric thin flat plate, it can satisfy the conditions
Ixx = Iyy = 1

2Izz and can then be replaced by three point
masses. However, if the platform has a certain thickness, it has
to be replaced by four point masses on different planes. Namely,
four legs must be used and the attachment points of the legs on
the platform do not lie on one plane in order to obtain a reac-
tionless 6-DOF parallel mechanism with thick or non-symmetric
platform.

Therefore, by dynamically balancing each of the three legs
— including the point mass — and attaching the legs — with-
out the point masses — to a common platform satisfying the
above conditions, a reactionless 6-DOF mechanism will be ob-
tained. This result is correct because the redistribution of the
internal forces due to the kinematic constraints induced by the
platform do not affect the dynamic balancing. Indeed, dynamic
balancing is a property of the moving masses only. Hence start-
ing from this point mass, all the parameters of the bars of the
four-bar mechanisms are chosen or calculated under the reac-
tionless conditions. Finally a numerical example of the reac-
tionless 3-DOF leg mechanism is given in Table 1 (point mass
mpm = 0.1143kg) where the lengths are in meters and masses
in kilograms. Note that if a point mass, a four-bar linkage or a
combination of mechanisms is attached on one element of an-
other four-bar linkage, the parameters of this element in the table
are actually the resulting parameters of the element and the at-
tached mechanisms. For example, the parameters(m32, r32, k32)
in the table are resulting quantities of the third bar of the second
four-bar linkage and the composite mechanism. Furthermore,
Ixx1j = Ixx2j = Ixx3j = Ixxb3 = Ixxb4 = 6 × 10−6kg ·m2,
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Table 1: A numerical example of the reactionless spatial 6-DOF
parallel mechanism.

Para. 1st Mech. 2nd Mech. 3rd Mech. 4th Mech.

m1j 16.386 5 0.7 2.8
m2j 30.178 5 0.5 2.0
m3j 21.475 10.875 0.775 3.1
mbj 0.4 0.2
l1j 1.608 0.812 0.5 0.25
l2j 5 2.5 1.0 0.5
l3j 1.608 0.812 0.5 0.25
lbj 1.0 0.5
r1j 0.804 0.285 0.17446 0.08723
r2j 3.64255 1.62254 0.5115 0.25575
r3j 1.64619 0.2423 0.165 0.0825
rbj 0.5 0.25
k1j 2.673709 0.636766 0.197312 0.098656
k2j 0.1 0.84 0.175 0.0875
k3j 1.25593 0.273337 0.178106 0.089053

Iyyb3 = 0.033kg ·m2, Iyy1j = Izz1j = mk2
1j , Iyy2j = Izz2j =

mk2
2j , Iyy3j = Izz3j = mk2

3j , j = 1, 2, 3, 4.
The verification of the reactionless property of the spatial

6-DOF parallel mechanism is performed using the dynamic sim-
ulation software ADAMS. For the above example mechanism, a
simulation model is built using ADAMS (Fig. 7). Simulations
have been performed for several arbitrary trajectories. The re-
sulting reaction forces and moments on the base are illustrated
in Fig. 8. The results clearly demonstrate that the resulting reac-
tion forces and moments on the base are very small with respect
to the joint forces and driving torques (with the ratio of10−5

to 10−6). Indeed, the reaction forces and moments obtained are
most likely due to numerical simulation noise or small model-
ing errors. Hence, it is clearly demonstrated that the synthesized
spatial 6-DOF mechanisms can be completely balanced. In other
words, there are no reaction forces and moments on the base at
all times and for any trajectory. These numerical simulation re-
sults support the formal mathematical proof provided in (Wu and
Gosselin, 2002).

5 Conclusion

The design of a dynamically balanced spatial 6-DOF parallel
mechanism using planar four-bar linkages has been presented in
this paper. The geometric architecture and the inverse and direct
kinematic problems have been solved. Then, reactionless spatial
6-DOF mechanisms using four-bar linkages have been synthe-
sized. A numerical example of the reactionless spatial 6-DOF
mechanisms has been given in this paper and with the help of the
dynamic simulation software ADAMS it has been shown that
the mechanism is reactionless for any trajectory and no torque

Figure 7: Modeling of reactionless 6-DOF mechanisms using
ADAMS.

Figure 8: Verification of the reactionless property of the mecha-
nisms.
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is required at the actuators to maintain the mechanism in static
equilibrium for any configuration.

Future work includes the optimal design and fabrication of
prototypes of the reactionless spatial 6-DOF parallel mechanisms
using planar four-bar linkages. Reactionless mechanisms are of
interest to applications such as space robots or telescope mirror
mechanisms.
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Abstract: In this paper, we examine the modular 
development of two alternate methods for distributed 
computation of the forward dynamics simulations of 
constrained mechanical systems such as four-bar linkages. 
We exploit the natural spatial parallelism of closed-chain 
linkages, initially, for the modular development of overall 
dynamics and subsequently, for the distributed numerical 
simulation of the dynamics. Traditionally, the numerical 
simulation problem of constrained mechanical systems has 
been treated as two separate stages: the problem of algorithm 
development and the subsequent numerical problem of 
advancing the discretized differential equations in time. 
However the potential numerical instabilities arising from the 
formulation stiffness of the algorithm development stage has 
the potential to hinder the subsequent numerical integration 
stage. These aspects are also explored during the evaluation 
of the two alternative approaches for the distributed forward 
dynamics simulation of a four-bar linkage and preliminary 
results to quantify the overall computational efficiency and 
accuracy are presented. 

 
1 Introduction 

 
In the last quarter century, dynamics simulation tools have 
seen manifold increases in terms of their usage in the design, 
analysis, parametric refinement and ultimately model-based 
control of a variety of multibody systems such as vehicles, 
heavy machinery, spacecraft and robots. In the absence of 
efficient, general-purpose, closed-form analytical methods, 
numerical simulation methods have taken a premier position 
for simulation of such multibody systems. The interested 
reader may refer to a number of books on the subject (Ascher 
and Petzold, 1998; Garcia de Jalón and Bayo, 1994; Haug, 
1989; Schiehlen, 1990; Shabana, 1989) for further details on 

the wide variety of formulations and computational methods 
that exist in the literature for numerical implementation of 
multibody simulations.  

While efficient formulations exist for serial chain and tree 
structured multibody systems, the adaptation of these 
methods for the simulation of closed-chain linkages and 
parallel manipulators is relatively more difficult. Such 
systems possess one or more closed kinematic loops, 
requiring the introduction of algebraic (typically non-linear) 
constraints into the formulation. In our work, we will restrict 
our attention to the forward dynamic simulation of this class 
of constrained mechanical systems. 

At the outset, we note that the configuration of such 
constrained multibody systems can be described by a variety 
of sets of coordinates. The suitable selection of a set of 
configuration coordinates is of particular importance due to 
its impact both on the ease of formulation and the subsequent 
computational efficiency. While the use of expanded sets of 
dependent configuration coordinates linked together by 
constraining relations is considered more appropriate for 
general-purpose analysis than the use of a minimal set of 
independent configuration coordinates, considerable variety 
and choice in selection of such sets exists. These choices may 
be broadly classified into: (i) relative; (ii) reference point and 
(iii) natural (or fully Cartesian), each bringing its 
corresponding share of advantages and shortcomings which 
are discussed in detail in Garcia de Jalón and Bayo (1994). In 
our case, we will focus our attention on the use of sets of 
relative coordinates, parameterizing the relative degrees of 
freedom at kinematic articulations. By facilitating direct 
control of joint-based actuators and enabling a minimal 
description of the configuration of open-chain systems, such 
sets of relative coordinates have found extensive use in the 
mechanisms and robotics community despite other 
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shortcomings in the form of creation of transcendental 
constraint relations or of relatively increased complexity of 
formulations of equations of motion. 

In this paper, we examine both the development and 
performance-evaluation of two alternate methods for 
modular and distributed forward dynamic simulations of 
constrained mechanical systems using such relative 
coordinates. The emphasis on modular development is to 
promote reuse of existing components. Specifically, we will 
consider that the equations of motion of the individual 
subsystems/modules are well known and available and that 
an overall system may be composed of several serial or tree 
structured individual subsystems plus sets of holonomic 
constraints. In particular, we will examine exploiting the 
spatial parallelism (McMillan, 1994) that is inherent in closed 
kinematic chains to pursue a modular composition of the 
overall system dynamics. Such simulations are typically also 
computationally expensive and hence effective methods for 
distribution of computational load on multiple processors 
(associated with the composing subsystems) is attractive. The 
traditionally adopted solution approach is to: augment the 
unconstrained system dynamics with the differentiated 
constraints and Lagrange multipliers; convert the augmented 
system into a system of Ordinary Differential Equations 
(ODEs) by a variety of methods (to be discussed in the next 
section); which are then numerical integrated with 
appropriately applied stabilization or regularization 
techniques (Ascher and Petzold, 1998; Garcia de Jalón and 
Bayo, 1994). While good performance of such approaches 
has been reported for unified system solution, in our work we 
wish to their applicability and viability in the distributed 
computation domain. 

Specifically, we will examine two approaches – a 
compliance-based method (e.g. Wang et al., 2000) and a 
projection-based method (Yun and Sarkar, 1998) – from the 
viewpoint of distributing the dynamics computation. 
Compliance based methods use artificial mechanical 
compliance elements (virtual springs and dampers) to 
approximate the constraint forces. Such methods are 
attractive for distribution of the forward dynamics simulation 
because they permit explicit approximation of loop-closure 
constraint forces and can then effectively decouple the 
numerical integration of component dynamical sub-systems. 
In contrast, projection-based methods, require projection of 
the overall dynamics equations onto the feasible motion 
directions (the reduced-dimensional space of independent 
generalized velocities), which can add to the computation 
complexity. However, by permitting the inclusion of various 
stabilization and regularization methods, this latter approach 
shows considerable promise for ensuring consistency of the 
constraints over long periods of time in the presence of 
numerical disturbances.   

Thus, in this paper, we wish to compare the compliance 
based and projection-based approaches focusing specifically 
on: (i) the modular development of dynamics formulation of 
an entire closed-loop manipulator by a composition of the 
dynamics of the component subsystems; (ii) re-distributing 

the computation of the forward dynamics simulations back to 
the individual subsystems; and (iii) quantifying the relative 
merits in terms of the relative computational efficiency and 
accuracy of the two approaches. These aspects will be 
studied in the context of the distributed forward dynamic 
simulation of a planar four-bar, whose overall dynamic 
equations are assumed to result from constraining the 
independent dynamics of a 2 degree-of-freedom (d.o.f.) left 
chain and a 1 d.o.f. right chain by means of holonomic 
constraints. 

 
2 Background 

 
One promising method to overcome the complexity of 
robotic systems consists of breaking down the system into 
independent subsystems, which can mapped onto 
distributed/parallel processing elements, at the algorithmic or 
natural body levels. Henrich and Höniger (1997) present a 
brief review and a preliminary taxonomy of the different 
levels of parallelism that have been explored in the context of 
robotic applications and note that parallelization at all levels 
may not be possible. Results obtained by parallelizing 
algorithms vary depending on the degree of dependency and 
coupling among the equations. While image processing 
problems (Chaudhary and Aggarwal, 1990) can be broken 
down quite well by dividing the image into smaller 
independent blocks, the problems of dynamic simulation of 
constrained mechanical systems is strongly coupled problem 
and the task is not trivially parallelizable (Fijany and Bejczy, 
1992; Zoyama, 1993).  

Fijany and Bejczy (1992) survey many of the methods 
developed for parallelization of dynamics algorithms, both at 
the algorithmic level and at the natural body level, for serial 
chain manipulators. Most work has focused on fine grain 
parallel algorithms for implementation on special purpose 
computational architectures (Lee and Chang, 1986; Lee and 
Chang, 1988; Sadayappan et al., 1989). The primary 
motivation behind such methods is the desire to speed up 
computation to satisfy the required real-time constraints and 
not the requirement for modularity. In contrast, McMillan 
(1994) proposed and evaluated the use of a combination of 
spatial parallelism, based on the structural parallelism of a 
multi-arm or multi-legged system, and temporal parallelism, 
to compute the forward dynamics of individual chains, 
examining synchronization requirements and load balancing 
and our proposed distribution approach is more in this vein. 

Several efficient algorithmic approaches have been 
developed for forward dynamics computation of serial-chain 
and tree-structured multibody systems. The two principal 
approaches are: Composite Rigid Body Methods (CRBM) 
(Walker and Orin, 1982) which have a computational 
complexity of O(N3) but are highly effective for typical robot 
arms; and Articulated Body Methods (ABM) (Featherstone, 
1983) with fast recursive efficient algorithms of O(N) 
complexity for simulation of longer serial-chain and tree 
structured dynamic systems. Ascher et al.(1997) unified the 
two seemingly disparate methods by showing that the 
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different dynamics algorithms (ABM, CRBM) can be derived 
as different elimination methods for solving an augmented 
system of Differential Algebraic Equations (DAEs). They 
also highlight the potential numerical instabilities 
(“formulation stiffness”) that can arise from separating the 
treatment of the forward dynamics problem of computing the 
system accelerations from the numerical integration problem 
of advancing the discretized differential equations in time 
and advocate a global, unified view.  

The dynamics of mechanical systems with closed loops 
can be formulated as a system of ODEs whose solutions are 
required to satisfy additional holonomic (algebraic) equations 
resulting from cutting the loops (Featherstone, 1987). The 
dynamics of mechanical systems with holonomic constraints 
can be formulated as Lagrangian equations of the first kind 
(Arnold, 1989), as:   

q�  = v  (1) 

vqM �)(  = qAuvqf Tt )(),,,( −  (2) 

)(qC  = 0  (3) 
where 
q  is the n-dimensional vector of generalized coordinates. 

v  is the n-dimensional vector of generalized velocities. 
)(qM  is the n × n dimensional inertia matrix. 

),,,( uvqf t is the n-dimensional vector of external forces.  

 u is the vector of actuator forces/torques. 
)(qC  is a m-dimensional vector of holonomic constraints. 

)(qA =
q
C

∂
∂

is the m × n constraint Jacobian matrix. 

is the m-dimensional vector of Lagrange multipliers. 
 

The resulting formulations in non-minimal (redundant) 
sets of coordinates yields an often simpler, albeit larger, 
system of index-3 Differential Algebraic Equations (DAE). 
The development of such models for the entire system using 
augmented Lagrangian based models, initially in a redundant 
set of coordinates with a subsequent determination of the 
multipliers is also attractive since the given models can be 
used for both forward and inverse dynamics. 

The solution of a system of index-3 DAEs by direct finite 
difference discretization is not possible using explicit 
discretization methods. The two principal approaches 
adopted for the forward dynamics simulation of such systems 
are: (i) Direct elimination of the surplus variables using the 
position-level algebraic constraints to explicitly reduce the 
index-3 DAE to an ODE in a minimal set of generalized 
coordinates (conversion into Lagrange’s Equations of the 2nd 
kind). The resulting (smaller size) ODE can then be 
integrated using ODE methods without worrying about the 
stability issues. However, such a reduction cannot be done in 
general, and even when it can, the obtained differential 
equations are typically complicated (Kecskemethy et al., 
1997). (ii) Converted ODE approach wherein all the 
algebraic position and velocity level constraints are 
differentiated and represented at the acceleration level to 
obtain an augmented index-1 DAE (in terms of both the 

unknown accelerations and the unknown multipliers). 
Differentiating the position constraints, Eqn. 3, with respect 
to time, yields the velocity-level constraints: 

0)( == vqAC�  (4) 

and a further differentiation with respect to time yields the 
acceleration level constraints as: 

vqAvqAC )()( ���� += =0 (5) 

Thus, Eqn. 2 can then be written together with Eqn. 5 as an 
index-1 DAE as: 
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Such index-1 DAEs may be solved by: simply 
eliminating the Lagrange multipliers in favor of the unknown 
accelerations leaving a system of ODEs (Ascher and Petzold, 
1998); explicitly computing the Lagrange multipliers by a 
projection into the constrained force space (Murray et al., 
1994); approximating the Lagrange multipliers using 
artificial compliance elements such as virtual springs and 
dampers (Wang et al., 2000; ); or projecting the equations of 
motion onto the tangent space of the constraint manifold in a 
variety of ways to obtain constraint-reaction free equations of 
motion (Garcia de Jalón and Bayo, 1994). These aspects will 
be explicitly discussed in the next section. 

Some of the drawbacks of the converted ODE approach 
include the need to provide additional consistent initial 
conditions and the fact that the differentiated constraint 
manifold is mildly unstable resulting in drift of the state from 
the position constraint manifold. While the growth rate can 
be reduced by lowering the error tolerance and by using 
smaller step-sizes or greater numerical precision, this comes 
at the cost of longer and more expensive computations.  

Hence, most constrained multibody methods also 
combine (one or more) of the following methods for 
improved numerical solution using explicit discretization 
methods (Ascher and Petzold, 1998): (a) Coordinate 
projection of the state of the system onto the constraint 
manifold at frequent intervals to ensure maintenance of the 
algebraic constraint; (b) Computing a local velocity-level 
parameterization and integrating the ODE on the constraint 
manifold (in the independent coordinates); or (c) Creation of 
an artificial first or second-order dynamical system which has 
the algebraic constraint as its attractive equilibrium 
configuration (Baumgarte, 1983). While Baumgarte’s 
technique is very popular in the engineering application 
community, principally due to the resulting augmented ODE 
formulation, the practical selection of the parameters of the 
stabilization system depends both on the discretization 
methods and step-size and is widely regarded as an open 
research problem (Ascher et al., 1995). 

 
3 Converted ODE Approaches  

 
Index-1 DAE systems resulting from the converted ODE 
apparoach are typically solved using one of the following 
three approaches: (a) direct Lagrange multiplier elimination; 
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(b) compliance-based; or (c) projection-based.  
In the direct Lagrange multiplier elimination 

approaches, a simultaneous solution of the augmented linear 
system of equations in Eqn. 6 is possible at each time step. 
While we note that an explicit inversion of the augmented 
system may be avoided by adopting a Gaussian elimination 
method, the overall approach may still be denoted as: 
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Thus the overall system may now be written as a system of 
first order ODEs as: 
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which may then be integrated using standard codes. Note 
that, in principle, the index-reduced system Eqn. 8 needs 
more initial conditions than the original system Eqn. 1-3 to 
specify a unique solution. The main advantage is conceptual 
simplicity and simultaneous determination of the 
accelerations and the Lagrange multipliers by solving a 
linear system of equations. However, the constraint 
conditions may be progressively violated, especially in the 
presence of large step sizes, leading to unacceptably large 
errors even for short duration simulations. 

In the compliance-based approaches, the loop-closure 
constraints are relaxed and replaced using virtual springs and 
dampers. Using such virtual springs can be considered as a 
form of penalty formulation (see Section 5.1.4 of Garcia de 
Jalón and Bayo (1994)) which incorporates the constraint 
equations as a dynamical system penalized by a large factor. 
The Lagrange multipliers are approximated using a force-law 
(based the extent of the constraint violation and an assumed 
spring stiffness) and eliminated from the list of n+m 
unknowns leaving behind a system of 2n first order ODEs. 
While the sole initial drawback may appear to be restricted to 
the numerical ill-conditioning due to selection of large 
penalty factors, it is important to note that penalty approaches 
only approximate the true constraint forces and can create 
unanticipated problems (as will be discussed later).  

Finally, the class of projection-based approaches seek to 
take the constraint-reaction containing dynamical equations 
into the orthogonal and tangent subspaces of the vector space 
of the system’s generalized velocities. Let S(q) be a n× (n-m) 

dimensional full rank matrix whose column space is in the 
null space of A(q)  i.e. A(q)S(q) = 0. The orthogonal 

subspace is spanned by the so-called constraint vectors 
(forming the rows of the matrix A(q) ) while the tangent 

subspace complements this orthogonal subspace in the overall 
generalized velocity vector space. All feasible dependent 
velocities, q� , of a constrained multibody system necessarily 

belong to this tangent space, appropriately called the space of 
feasible motions. This space is spanned by the columns of 
S(q) ) and is parameterized by an n-m dimensional vector of 

independent velocities, (t) , yielding the expression for the 

feasible dependent velocities as q� = S(q) (t) . 

It is very important to note two factors at this stage. First, 
the initial selection of the set of configuration coordinates 
plays an important role here. In particular, while it is always 
possible to create a Riemannian configuration space (and 
consequently vector spaces for the generalized velocities) 
using sets of relative coordinates, special care needs to be 
exercised when treating configuration spaces created with 
other sets of generalized coordinates (such as Cartesian 
coordinates of the bodies in SE(2) or SE(3)). This is because 
the generalized velocity space for Cartesian coordinates need 
not necessarily form a vector space and hence, the notion of 
orthogonal complement subspaces, which exist only in a 
Riemannian setting. needs to be examined carefully. For 
example, in Blajer et al. (1994), the local task-space 
coordinates (consisting only translations) form a Riemannian 
space permitting the orthogonal decomposition carried out. 
This is the other motivating factor for restricting ourselves to 
joint-based relative-coordinate descriptions of the 
configuration of the system. Second, a family of choices 
exists for the selection of projection between dependent and 
independent velocities (including the case where the set of 
independent velocities form a proper subset of the original set 
of dependent velocities) and each such choice can give rise to 
a different S(q) . See Garcia de Jalón and Bayo (1994) for a 

description of the many possibilities as well as the 
determination of the projection matrices determining the 
transformations between dependent and independent 
velocities.  

However, once a projection is selected, the dynamic 
equations of motion can now be projected on to the 
instantaneous feasible motion directions, to obtain the so-
called the so-called constraint-reaction-free equations of 

motion. Pre-multiplying both sides of Eqn. 2 by TS and 

noting that 0AS TT =  we get: 

vqMS �)(T  = ),,,( uvqfS tT  (9) 

Note that this is a system of n-m 2nd order differential 
equations in the n dependent accelerations. All further steps 
for the solution of this system of equations may be performed 
either in terms of dependent or independent coordinates, as 
discussed in Chapter 5 of Garcia de Jalón and Bayo (1994).   

For example, the m acceleration-level constraints shown 
in Eqn. 5 may be appended to this system resulting in a 
system of 2n first-order ODEs in the state vector consisting 
of the n dependent velocities and n dependent accelerations. 
Note that while the notion of dependent and independent 
velocities is not explicitly considered, this is implicit in the 

selection of TS . Alternatively, by explicitly considering the 
same local projection used to determine the feasible motion 
directions, the constraint-reaction-free equations of motion 
may be expressed in terms of the independent coordinates 
(Serna et al., 1982). The final solution may be obtained either 
by numerically integrating a system of 2(n-m) first-order 
ODEs in the (n-m) independent velocities and n-m 
independent accelerations and solving the position problem at 
each step or by numerically integrating a system of 2n-m 
first-order ODEs in the n dependent velocities and n-m 
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independent accelerations. The benefits accumulate from two 
sources. First, since the feasible motion directions are 
guaranteed to be tangent to the holonomic constraint 
manifold, with an adequately small step size the resulting 
integrated solution is guaranteed to maintain the constraints. 
Second, the integration of reduced-order system of ODEs 
(with either n-m or 2n-m states) also reduces the error that 
can ‘creep in’ due to numerical integration. 

 
4    The Two Approaches Under Consideration 
 
4.1  Compliance based Method (Method A) 

In Wang et al. (2000), the Lagrange multiplier  in Eqn. 
2 is explicitly calculated as a restoring force provided by a 
virtual spring. This restoring force, proportional to the extent 
of constraint violation, can be expressed as 

)(CK iii q= where Ki is the spring constant and )(qiC is the 

constraint violation in the direction of the respective iλ . By 

substituting the value of  in Eqn. 2, the final ODE system 
can be written as:  
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where ][ iKdiag=K  and )(qC is the vector of constraint 

violations. 
 

4.2   Projection-based Method (Method B) 
The derivation process discussed by Sarkar and Yun 

(1998) very closely resembles the work of Serna et al, (1982) 
but with the addition of Baumgarte stabilization. The 
formulation in terms of rheonomous constraints permits easy 
incorporation of Baumgarte stabilization and additionally can 
be easily specialized for the scleronomous case. The 
holonomic constraints 0qC =)(  are approximated by a first 

order system of the form: 

0,)()( >=+ σσ 0qCqC�  (11) 

where σ is the rate of convergence. The equilibrium 
condition for this first order system is the constraint manifold 

0qC =)( and for any initial condition )0(q , which may not 

satisfy the holonomic constraint equation 0qC =))0(( , the 

above first order equation guarantees exponential 
convergence of ))(( tqC  to zero as the time t progresses. The 

rate of convergence will be determined by σ, which can be 
chosen based on specific application. By taking )(qA  as the 

Jacobian of )(qC , Eqn. 11 can be written as: 

a(q)qCqqA =−= )()( σ�  (12) 
Then, the general solution of Eqn. 12 is given by: 

)()()( qqSvq +== t�  (13) 

where S(q) is an n× (n-m) dimensional full rank matrix 

whose column space is in the null space of A(q)  i.e. 

A(q)S(q) =0, (t)  is an n-m dimensional vector of 

independent velocities and ���  is the n-dimensional 

particular solution  of Eqn. 11. Differentiating once we get: 

),()()()()()()()( qqSqqSqSv +=++= ttt �����  (14) 

Pre-multiplying both sides of Eqn. 2 by TS and noting that 

0AS TT =  we get: 

vqMS �)(T  = ),,,( uvqfS tT  (15) 

By substituting v�  from Eqn. 14 into Eqn. 15 and solving for 
�  we get 

)),,,(()( 1 uvqfSMSMSS tTTT +−= −�  (16) 

The resulting overall system of ODEs may be expressed in 
state-space form as: 
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(17) 

While this method would work for any projection that is 
independent of the existing constraints, the particular adopted 
projection (wherein the independent velocities are selected as 
a proper subset of the original set of dependent velocities) 
yields a simple and robust formulation.  

 
5 Distributed Forward Dynamics for a Four-bar linkage 
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Figure 1. Representation of the four-bar linkage (a) 
Divided and (b) Composite models. 
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5.1   Lagrangian Modeling  
The modeling process for the four-bar linkage considered 

here and the selected parameters are the same as in Wang et 
al. (2000) and are summarized here again for clarity. The 
four-bar linkage (Fig. 1) consists of three movable links 
(input, coupler link and the output links) of lengths l1, l2 and 
l3 respectively whose orientation with respect to the 
horizontal can be denoted by angles θ , α  and φ . The mass 

of each moving link of length li is mi, and the moment of 
inertia of the moving link about the axis through the center of 
the mass and perpendicular to the plane of its motion is Ii, 
where i=1,2,3. The mass centers of each link is situated at a 
distance lci from the proximal joint of each link. 

The equations of motion for the overall system are 
derived by treating the four-bar as being composed of a left 
chain (l1+l2) and the right chain (l3), as shown in Fig. 1. The 
dynamic equations of each chain are derived independently 
by the Lagrange’s method and the equations of the overall 
system written as an index-3 DAE as: 

0qC
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The constraint equations are obtained from the requirement 
that the left and right chains to stay connected at the cut joint, 
which can be expressed in matrix form as:  









=








+−−

++−−
=

0

0

sinsinsin

coscoscos
)(

321

3021

φαθ
φαθ

lll

llll
qC  

 
(19) 

 
5.2  Compliance-based Method (Method A) 
By assuming that the state vector TT

B
T

A ][ qqq = has a state 

variables belonging to the chain-a and b state variables 
belonging to the chain-b and that a + b = n, the distributed 
model may be obtained in state-space form as: 
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where K is the compliance matrix and C represents the extent 
of the constraint violation. 
 

 
  Node A  Node B 

    

Figure 2: Distributed modeling for a four-bar linkage 
(Method A) 

The two dynamic sub-systems, shown in Eqn. 20, can be 
simulated in a distributed manner if at every time step: (i) 
either the information pertaining to C(q), the extent of the 
constraint violation, is made available explicitly or (ii) 
computed by exchanging state information between the two 
sub-subsystems. This suggests a way to distribute the 
computational load between two processors, as shown 
graphically in Fig. 2, wherein each independent sub-part can 
now be numerically integrated on a different processor. The 
sole coupling between the two sub-parts is due to the 
Lagrange multipliers, which are now explicitly calculated 
using the virtual spring. While this is shown for a “two part 
system”, the process generalizes easily for “n-part” system.  
 
5.3  Projection-based method (Method B) 
 
Eqn. 17 may be converted into a suitable state-space form as: 
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By similarly assuming that the state vector q has a state 

variables belonging to the chain-A and b state variables 
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belonging to the chain-b with a + b = n the projected 
dynamics equations may be partitioned as: 
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Multiplying we get: 
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Noting that the first part of Eqn. 23 is (STMS) and collecting 
terms we get: 

( )
( ) )]([

)]([
1

1

BBBBBB
T
B

T

AAAAAA
T
A

T

GVMuESMSS

GVMuESMSS

−−−+

−−−=
−

−
�

 
 

(24) 
 

Thus, it is now possible to calculate the state vectors forming 
Eqn. 21 separately as: 
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Figure 3: Distributed modeling of a four-bar linkage 
(Method B) 

By examining Eqn. 25, we note that the overall system can be 
evaluated in a distributed manner if states iq and i  (i =a,b) 

are made available. This suggests a way to split the 
calculation of the dynamic equations, as depicted in Fig. 3. 
Each independent sub-part can now be numerically integrated 

on a different processor thereby permitting the distribution of 
the load. At each time-instant, the complete state of the 
system needs to be exchanged between the subparts. The 
coupling between the various sub-parts is due to the existence 

of the 1)( −MSST . In the arrangement shown in Fig. 3, this 

matrix inverse needs to be computed on each and every 
processor (although we note that the explicit calculation of 
the inverse is typically avoided by using an optimal equation 
solver). Alternatively, state information from the slave 
processors could be collected by a master processor at each 

time instant, the 1)( −MSST  could be computed once and the 

result subsequently propagated back to the slave processors 
where the actual numerical integration is performed.   

 
6 Performance Evaluation 

 
In the preceding section, we examined how both 

compliance-based and projection-based models of the four-
bar were subdivided into two-part systems to be run in a 
distributed manner on separate processors, requiring only the 
exchange of state information at every time instant. This was 
implemented using RT-LAB, a commercial off-the-shelf 
system for distributing the computation and a series of tests 
were performed to evaluate the performance of both methods 
of simulation. The numerical parameters of the system were 
chosen as shown in Table 1. The two primary metrics of 
performance evaluation were: (a) extent of the constraint 
error; and (b) number of iterations/computational time 
required for each method. This performance was evaluated 
using two separate scenarios: adaptive time-stepping and 
fixed time-stepping.  

 
Link lengths l1 = 1.0m l2 = 2.5m l3 = 3.0m 
Distance of mass centers lc1 = l1/2 lc2 = l2/2 lc3 = l3/2 
Link masses m1 = 1.0 Kg. m2 = 1.0 Kg. m3 = 1.0 Kg 
Mass moment of Inertias I1 = m1l1

2/12 I2 = m2l2
2/12 I3 = m3l3

2/12 
Initial Conditions (q(0))  θ  = pi/2 α  = 0.35328 φ  = 1.26486 

Torque inputs (u) τ1 = 6.0Nm τ2 = 0.0Nm τ3 = 0.0Nm 

Table 1: Relevant numerical parameters for the four-
bar linkage (Wang et al., 2000) 

 
6.1  Adaptive Time-stepping Scenario 

 
In this scenario, the relative tolerance was pre-specified and 
an adaptive timestepping scheme is used for the simulation. 
Four different relative tolerances, varying in orders of 
magnitude from 1e-3 to 1e-6, were examined in this scenario. 
Each method has one independent parameter that could 
potentially affect the performance of the method – the 
stiffness of the virtual spring (K) in the compliance-based 
approach and the convergence factor (�)  in the case of the 
projection-based method. In the plots that result, we examine: 
the role of the independent parameter on the constraint error; 
and the effect of the independent parameter on the number of 
time-steps required to simulate a fixed simulation duration. 
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 Figure 4: Constraint error in the projection-based 
approach using adaptive time-stepping for two sets of 

relative tolerances (a) 1e-3 and (b) 1e-6. 

 
Figure 4 depicts the constraint error versus time for 

implementing the projection-based approach with different 
values of convergence factor (σ ) for two sets of relative 
tolerances (1e-3 and 1e-6) using the ODE45 Dormand-Prince 
adaptive time step solver. As can be seen from the results, the 
convergence factor (σ ) does not significantly affect the 
constraint errors and that the resulting relative constraint 
errors are representative of the selected relative tolerance 
settings. 

Figure 5 shows the resulting constraint errors that result 
from implementing the compliance-based approach with 
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Figure 5: Constraint error in the compliance-based 
approach using adaptive timestepping for two sets of 

relative tolerances (a) 1e-3 and (b) 1e-6. 

 
 

different values of the spring constant (K) (varied in orders of 
magnitude from 1e1 to 1e6). 

These were carried out for various settings of the relative 
tolerances of the adaptive time step solver but only shown 
here for two cases (1e-3 and 1e-6) in Fig. 5 (a) and (b) 
respectively. Qualitatively speaking, we note that decreasing 
the relative tolerance by three orders of magnitude did not 
affect the relative constraint errors, as can be seen by 
comparing Fig. 5 (a) and (b). However, within each graph, 
we note that the spring stiffness is increased, the constraint 
error drops commensurately but never attaining the 
performance levels of the projection-based method in Fig. 4. 
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Figure 6: Number of iterations vs independent parameter 
for numerical integration of a 10 second duration with 

variable timestep for (a) Projection-based and (b) 
Compliance-based approaches. 

To further compare the two methods in the adaptive time-
stepping scenario, we examine the computational time 
required as measured in the number of discrete time-steps 
required to simulate 10 seconds. Figure 6 depicts the number 
of discrete time-steps of the adaptive time-stepping algorithm 
required to keep the constraint errors within the specified 
tolerances for different values of the parameters in each of 
the two methods. Two important features are to be noted: 
First, for increasing values of the parameter (��or K) both 
methods show a distinct increases in the number of time-
steps required to maintain a desired tolerance. However, 
while the rate of increase is linear in the case of the 
projection-based approach but tends to increase exponentially 
with increasing values of the spring stiffness in the 
compliance-based approach. Secondly, for a fixed value of  
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Figure 7: Constraint error for numerical integration 
with fixed timestep (1e-3 secs) for (a) Projection-based 

and (b) Compliance-based approaches.  

the independent parameter, an exponential increase in the 
number of iterations can be seen with decreasing values of 
the relative tolerance in the compliance-based approach. 

 
6.2  Fixed Time-stepping Case 
This second scenario is more suited for real-time simulation 
and hardware-in-the-loop type simulation applications where 
deterministic time-stepping of the simulation is desirable. A 
number of simulations with different values for fixed time-
steps (ranging from 1e-3 to 1e-6) were performed. However, 
only the resulting constraint errors from running the two 
simulation (compliance- and projection-based) schemes for a 
fixed step size of 0.001 seconds are shown in Fig. 7.  In Fig. 
7(a), we note that the selection of the value of the 
independent parameter (�) only plays a minor role since 
regardless of the selected value the constraint error remains 
near about 1e-12. In contrast, in Fig. 7(b) we see that for 
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small values of the spring stiffness, considerable constraint 
error results which decreases as K is increased. While this 
constraint error reduces to the order of 1e-3 as the spring 
stiffness is increased to 1e6, this improvement is not 
comparable to the error magnitudes observed for the 
projection-based method.  

 
7 Discussion 

 
Schiehlen et al.  (2000) performed a similar comparison 

by numerical simulation of a non-minimal description of a 
mechanical system obtained by coupling two or more 
minimal local subsystems with explicitly- or implicitly-stated 
holonomic constraints, with a variety of examples. They 
examined the effects of numerical integration with two 
similar classes of solution approaches, i.e. a so-called force 
coupling approach, which approximate the constraint forces 
by force laws proportional to the violation of coupling 
conditions; and the more traditional differential algebraic 
approach, using various integrators using projections on the 
position and velocity constraint manifold for stabilization. 

As they note in their discussion, force coupled systems 
are especially sensitive to initial violations of the assembly 
conditions which may cause the coupling forces to create 
additional disturbances that excite the system. Further, such 
force-coupled systems can cause the dynamic behavior to be 
severely changed and even resulting in instability of the 
whole system. In contrast, they note that DAE description 
combined with integrators that use projection methods offer 
an efficient way of coupling local subsystems on the level of 
their equations of motion or for closing kinematic loops. Our 
own results, developed in the context of distributed 
computation of similar types of constrained dynamical 
systems match these observations.  

In addition to the “natural” decoupling noted for the 
compliance-based formulation, several other advantages have 
been reported in the literature. These include the fact that 
appearance and disappearance of the constraints can be 
treated automatically and that the method performs robustly 
near kinematic singularity positions (Garcia de Jalón and 
Bayo, 1994). However, as noted by one of the reviewers, the 
Lagrange multipliers only form a part of the complete picture 
regarding the constraint forces. They represent the 
magnitude-type contribution while the other (and perhaps 
most important part) is the directional information that is 
embedded in the constraint Jacobian. The imperfect 
approximation of the Lagrange multipliers, coupled with the 
(artificial) relaxation of the constraints can over time lead to 
alternate configurations thereby indirectly affecting the 
directions of constraint vectors.  Hence, not withstanding the 
small magnitudes of the constraint violations, the incorrect 
projection of the Lagrange multipliers would: yield 
seemingly correct but non-physical results; and additionally 
act as a continuous source of disturbance. 
 
 

8 Summary 
 

In this paper, we examined aspects of both the 
development and performance-evaluation of two alternate 
methods for distributed forward dynamics simulations of 
constrained mechanical systems exemplified by the four-bar 
linkage. Similar situations may also be encountered in other 
arenas where the governing equations take the form of sets of 
ODEs coupled together by algebraic constraints and solution 
of the combined system of DAEs needs to be found. We 
exploited the natural spatial parallelism of closed-chain 
manipulators initially for the modular development of overall 
dynamics and subsequently for the distributed numerical 
simulation of the dynamics. Traditionally, the numerical 
simulation problem has been treated as being composed of 
two more-or-less independent stages: an initial algorithm 
development stage followed by a numerical integration stage. 
While, the coupling of the two stages may not be as relevant 
for unconstrained mechanical systems, it plays a significant 
role for the simulation of constrained mechanical systems. 
Our preliminary results (examined in the context of four-bar 
linkage discussed in the previous section) indicates that a 
global unified view of the evaluation of the computational 
complexity of the simulation is advisable. Specifically, at an 
algorithmic development level, the compliance-based 
approach provides a seemingly natural method for 
decoupling and distributing the computation and has roughly 
one-third of the computational complexity of the projection-
based approach. However, while the projection-based 
approach is computationally more expensive per time-step, 
fewer time-steps are required to maintain a desired relative 
constraint error tolerance leading to faster simulations.  
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Abstract:
This article discusses the role of quasi-coordinates for the

kinematic and dynamic modeling of parallel manipulators. In
contrast to serial manipulators, which do not require the use of
quasi-coordinates for the dynamic modeling, quasi-coordinates
are frequently used (implicitly) for parallel manipulators, but
rarely ever discussed explicitly. Thus, there is very little discus-
sion of quasi-coordinates in the general robotics literature. This
paper seeks to close this gap, by providing specific references
to classical dynamics literature on how to use quasi-coordinates
for multibody systems such as parallel manipulators. The list
of methods discussed in this paper, however, is by no means
exhaustive and should only be seen as a starting point to make
alternative dynamic modeling techniques more accessible to the
parallel manipulator research community.

1 Introduction

This section seeks to answer two questions: (1) What is a quasi-
coordinate and (2) why are quasi-coordinates important for the
modeling of parallel manipulators? To answer the first question,
the term quasi-coordinates can be defined as follows (Whittaker
[1]):

Definition of a Quasi-Coordinate:
A quasi-coordinate, p̃, is a coordinate for which only the time
derivative, d

dt p̃, must have a physical meaning. The quasi-
coordinate p̃ itself may not have a physical meaning. The time-
derivative of a quasi-coordinate is called a quasi-velocity.

The most common occurrence of quasi-coordinates and the only
one of interest throughout this article stems from the use of the
angular velocity vector, w, to describe the velocity of a rigid
body, e.g. the end-effector of a parallel manipulator. w is a quasi-
velocity, since it is well known that its integral generally does not
have a physical meaning [2, 3], in the sense that the orientation

cannot be retrieved from it (see Appendix). Note that within this
manuscript, quasi-coordinates are always indicated with a tilde
(e.g. p̃), to emphasize that they may not have a physical meaning.
In contrast a true coordinate is a coordinate with a clear physical
meaning.

It remains to answer the second question: Why are quasi-
coordinates important for the modeling of parallel manipulators?
This question is answered in the following two subsections:
Subsection 1.1 discusses the relevance of quasi-coordinates for
velocity kinematics and Subsection 1.2 for the dynamic model-
ing.

1.1 What is the meaning of x in θ̇ = Jẋ ?

The velocity kinematics of parallel manipulators with full six
degrees-of-freedom is sometimes written in the form

J1θ̇ = J2ẋ, (1)

or, by defining J = J−1
1 J2,

θ̇ = Jẋ, (2)

where θ is the vector of actuated joint angles and J is the
“geometric” Jacobian matrix of the manipulator (geometric and
analytic Jacobian matrices are discussed in more detail in Sub-
section 2.2). Furthermore, ẋ = [ṙx, ṙy, ṙz, ωx, ωy, ωz]

T repre-
sents the linear and angular velocity of the end-effector, specif-
ically, [rx, ry, rz ]

T is the position of the mobile platform and
[ωx, ωy, ωz]

T is its angular velocity.
Since the integral of the angular velocity vector, w =

[ωx, ωy, ωz]
T , does not have a physical meaning, the question

posed in this subsection’s title about the meaning of x is
somewhat ill-posed: x is a purely symbolic notation and its last
three components, i.e. the integrals of ωx, ωy, ωz do not have a
physical meaning. In the language of analytical mechanics this
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means that ωx, ωy, ωz are quasi-velocities. The corresponding
quasi-coordinates are denoted as π̃ in the following, where

π̃ =

 π̃x

π̃y

π̃z

 and

 d
dt π̃x
d
dt π̃y
d
dt π̃z

 =

 ωx

ωy

ωz

 .
x thus contains quasi-coordinates and should be written with a
tilde:

x̃ = [rx, ry, rz , π̃x, π̃y, π̃z]
T
. (3)

However, even if x is replaced by x̃ in Equation (2), Equation
(2) is still somewhat misleading1. Thus it is more appropriate
and concise to write Equation (2) using a screw, $ t, instead of ˙̃x:

θ̇ = J$t (4)

Similarly, Equation (1) then becomes J1θ̇ = J2$t.

1.2 Coordinates Used for the Dynamic Modeling of Serial
and Parallel Manipulators

All of the comments from the preceding subsection apply equally
to serial and parallel manipulators, the only difference being that
for serial manipulators, the Jacobian matrix appears on the other
side of Equations (2) and (4). Why then is it important to discuss
the topic of quasi-coordinates for parallel manipulators, while it
is of little relevance for serial manipulators?

The reason is that for serial manipulators it is not necessary
to employ quasi-coordinates as generalized coordinates in the
dynamic equations, since all terms can easily be described in the
joint space. In contrast, for parallel manipulators, end-effector
coordinates (or a combination of end-effector coordinates and
other coordinates) are almost always the preferred choice to
express the terms in the dynamic equations. This is discussed
in more detail below.

• For serial manipulators, the set of actuated joint coordinates
can always be used as a minimal set of generalized coor-
dinates. These coordinates are automatically independent,
since there are no closed kinematic chains. These general-
ized coordinates can then be used for example in Lagrange’s
equations or the principle of virtual work to derive the
equations of motion. While the resulting expressions are
generally far from trivial, each method is straightforward to
apply.

• For parallel manipulators, the set of actuated joint coor-
dinates can generally not be used as a minimal set of
generalized coordinates. The reason is that since the
forward kinematics can generally not be expressed in closed

1The authors find Equation (2) to be somewhat misleading, since it may
give the impression that the taskspace (i.e. the position and orientation of the
end-effector) can be parametrized by vector x̃. However, x̃ cannot be used to
parameterize the taskspace as discussed in Subsection 2.1.

form, the position and orientation of the end-effector cannot
be expressed in terms of only the actuated joint coordinates.
Thus, writing the dynamic equations in terms of only these
active joint coordinates is generally impossible. Since
closed-form inverse kinematic expressions are often avail-
able for parallel manipulators, it is generally convenient
to use the position and orientation of the end-effector
instead as generalized coordinates. Furthermore, it is often
convenient to use additional coordinates, e.g. to include the
position and orientation of other parts of the manipulator
to reduce the complexity of the expressions in the dynamic
equations2.

The fact that the orientation of the end-effector (and possibly
of other moving bodies) is to be included in the generalized
coordinates raises several questions: Which variables should be
used to parameterize the orientation? Can quasi-coordinates be
used for this purpose? Or is it necessary to use Euler angles?

Employing quasi-coordinates complicates the application
of many methods from analytical mechanics, e.g. Lagrange’s
equations. Fortunately, the related issues are well known and
well discussed in the general multibody dynamics literature.
However, in spite of the fact that parallel manipulators are one
instance of multibody systems, there is almost no discussion of
these issues in the literature specifically dealing with parallel
manipulators. In fact, textbooks on parallel manipulators discuss
dynamic modeling only very briefly (Merlet [5]) and apply La-
grange’s equations only for parallel manipulators with translation
capabilities (Tsai [6]) and thus avoid having to deal with quasi-
coordinates in Lagrange’s equations or other methods.

This article seeks to provide additional references from
the classical dynamics literature on how to deal with quasi-
coordinates, in order to make this literature more accessible to
the parallel manipulator research community.

1.3 Organization of This Article

The remainder of this article is organized as follows: Section
2 provides further background, including a more detailed dis-
cussion of quasi-coordinates, π̃, and the definition of the ana-
lytical and geometric Jacobian matrices. Section 3 reviews the
use of quasi-coordinates for dynamic modeling using Newton-
Euler, Virtual Work, Lagrange’s Equations, the Boltzmann-
Hamel Equations and the Gibbs-Appell Equations. While the
comments in Section 3 are general, Section 4 derives the equa-
tions of motion of a simple parallel manipulator using each of the
above methods. Section 5 summarizes the observations obtained
in Sections 3 and 4. Section 6 presents conclusions.

2 Background

The issues discussed in this article are primarily of relevance for
parallel manipulators satisfying both of the following assump-

2Several articles have been published on selecting a suitable set of coordinates
for the dynamic equations of parallel manipulators, see for example [4].
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tions:

• Assumption 1: The forward kinematics of the manipulator
cannot be expressed in closed form.

• Assumption 2: The end-effector has at least two degrees-
of-rotation.

Manipulators that violate one of the above assumptions are gen-
erally simple enough not to require the use of quasi-coordinates.
However, the majority of spatial parallel manipulators satisfy
both assumptions.

The classic Gough-Stewart platform [7] is used as a peda-
gogical example throughout this article, because (1) this mecha-
nism (and its dynamic modeling) is very well known and (2) it
illustrates the common problems. The purpose of this article is
not to find the simplest solution to modeling the Gough-Stewart
platform, but to use it as example to highlight various alternatives
for the dynamic modeling.

2.1 Relationships between φ and π̃, φ̇ and w

The orientation of the end-effector is often denoted by Euler
angles, φ1, φ2, φ3. (It is of no importance in this context which
Euler convention is used, e.g. ZYZ, etc.) The vector, φ =
[φ1, φ2, φ3]

T , is introduced as a short notation for the set of Euler
angles.

The velocity vectors φ̇ and w can easily be related to each
other by a configuration-dependent matrix. For example, if the
ZYZ convention is used for the Euler angles, it holds [8] (page
102): wx

wy

wz

 =

 0 − sin(φ1) cos(φ1) sin(φ2)
0 cos(φ1) sin(φ1) sin(φ2)
1 0 cos(φ2)

 φ̇1

φ̇2

φ̇3

 ,
(5)

which can be written as

w = B(φ) φ̇. (6)

While the velocities, φ̇ and w, are directly related to each other
by Equation (6), their integrals, i.e. φ and π̃, cannot be related
to each other. A simple example is provided in the Appendix
that demonstrates this fact. That example clearly shows that it
is impossible to recover the information of the orientation at the
end of an arbitrary trajectory from the quantity π̃(T ) =

∫ T

0 wdt.
Thus it is impossible to establish a mapping from π̃ to φ,
since information is lost in π̃. As a consequence it is also
impossible to parameterize the taskspace, i.e. end-effector
position and orientation, in terms of only r and π̃.

2.2 Analytical and Geometric Jacobian Matrices

The Jacobian matrix of a manipulator can be defined in two ways,
depending on whether w or φ̇ is used to describe the angular
velocity of the end-effector. Sciavicco and Siciliano [8] refer to

these Jacobian matrices as geometric Jacobian, JG, or analytical
Jacobian, JA, respectively. For parallel manipulators JA and JG

can be defined as follows:

θ̇ = JG

[
ṙ
w

]
, θ̇ = JA

[
ṙ
φ̇

]
.

The two Jacobian matrices are related by matrix B(φ) from
Equation (6):

JA = JG

[
Id3×3 0

0 B(φ)

]
,

where Id3×3 is the (3 × 3) identity matrix.
The challenge in the dynamic modeling arises from the fact

that the vector of Euler angles, φ, is very suitable to express the
orientation of the rigid body (mobile platform), but φ̇ is not very
suitable to describe its angular velocity. On the other hand, w
is much more convenient to describe the angular velocity, but its
integral, π̃, consists of quasi-coordinates.

3 Common Methods to Derive the Dynamic Equations

This section briefly describes the effect (if any) of quasi-
coordinates on the modeling of the dynamic equations using (1)
the method of Newton-Euler; (2) the principle of Virtual Work;
(3) Lagrange’s equations; (4) Boltzmann-Hamel Equations and
(5) Gibbs-Appell Equations. Some of the descriptions in this
section are kept rather short and are complemented by examples
in Section 4 that further illustrate the key points.

3.1 Method of Newton-Euler

The method of Newton-Euler does not require the selection
of generalized coordinates. As a consequence, there is no
conflict in using φ to describe orientation and w to describe
angular velocity of any body in the system. Thus, the method
of Newton-Euler is always a reliable way to determine the
equations of motion of any parallel manipulator. While this
method is not always the most computationally efficient, it is
easy to understand and generally applicable. An example of its
application is given in Subsection 4.1.

3.2 Virtual Work

The principle of virtual work has been successfully applied
to parallel manipulators for several years [9, 10, 6, 11].
All of those articles employ quasi-coordinates to define
virtual displacements, namely δx, where x stands for
x̃ = [rx, ry, rz, π̃x, π̃y , π̃z]

T . Thus the use of δπ̃x, δπ̃y, δπ̃z is
implicit in the formulation and not explicitly discussed. While
this implicit use of δπ̃ is permissible, it is not obvious why it is
permissible. The purpose of this subsection is thus to review the
reasons for the correctness of the use of δπ̃x, δπ̃y, δπ̃z .

The formulation of the principle of virtual work in Lanczos
[3] (pp. 74-79) for a mechanical system with external forces

330



f1, f2, . . . , fm acting at points P1, P2, . . . Pm of the system,
respectively, serves as a starting point for the discussion. While
the description focuses on the principle of virtual work for static
equilibrium, the generalization to dynamics using the principle
of d’Alembert is straight forward (for details see Lanczos [3])
and not discussed here. The virtual displacements of points,
P1, . . . , Pn, are denoted as δs1, δs2, . . . , δsm, respectively. The
principle of virtual work can then be stated as follows:
The mechanical system is in equilibrium if and only if the total
work of all impressed forces vanishes:

δW = f1 · δs1 + f2 · δs2 + . . .+ fm · δsm = 0. (7)

Standard Procedure:
When applying this principle to a given mechanical system, the
typical next step is to select a convenient set of true coordinates
as generalized coordinates, q1, q2, . . . , qn, and to express the
position, sk, of point Pk as a function of those coordinates:
sk = sk(q1, . . . , qn). The corresponding virtual displacement

is δsk =
n∑

j=1

∂sk

∂qj
δqj and Equation (7) becomes

δW =
m∑

i=1

fi · δsi =
m∑

i=1

fi ·

 n∑
j=1

∂sk

∂qj
δqj


=

n∑
j=1

(
m∑

i=1

fi ·
∂sk

∂qj

)
︸ ︷︷ ︸

Qj

δqj =
n∑

j=1

Qj δqj = 0, (8)

where Qj is the generalized force (scalar) corresponding to
generalized coordinate qj . Equation (8) is a convenient form,
because a system’s motion can now be described in terms of
any desired choice of generalized coordinates, rather than the
explicit coordinates of m points. However, since the expression
sk = sk(q1, . . . , qn), which was used in the derivation, only
applies for true coordinates, the question arises whether Equa-
tion (8) applies if the qj include quasi-coordinates, specifically
π̃x, π̃y, π̃z .

Body-oriented Formulation:
To derive a formulation more suitable to parallel manipulators it
is necessary to go back to Equation (7). What we really want
for a multi-body system, such as a parallel manipulator, is to
move from a point-oriented to a body-oriented description of the
motion. Thus, let us assume that point Pk lies on body k and
that the displacement and velocity of Pk can thus be expressed
in terms of the motion of body k.

Let rk denote the position of reference point Rk of body
k, as shown in Figure 1, ṙk the linear velocity of point Rk,
wk the body’s angular velocity and π̃k the corresponding quasi-
coordinates. The velocity ṡk of point Pk can be expressed as:

ṡk = ṙk + wk × (sk − rk)︸ ︷︷ ︸
ck

or
dsk

dt
=
drk

dt
+
dπ̃k

dt
× ck,

O

k

k

R k

ck

kP

s

r

Body k

point of interest

reference point

Figure 1: Point of interest, Pk, and reference point,Rk, on Body
k.

where ck = sk − rk is the vector from reference point Rk to
point Pk (see Figure 1). Since only 1st order differentials are
considered, ck can be treated as constant, and we can multiply
both sides by dt to obtain a relation between infinitesimal
displacements (differentials):

dsk = drk + dπ̃k × ck. (9)

To make the role of dπ̃k above even more clear, it is helpful to
look at a different way of deriving Equation (9). Instantaneously
wk can be described as wk = ψ̇kek, where ψ̇k is the angular
speed and ek (unit vector) its instantaneous axis of rotation,
resulting in the same relationship as Equation (9):

dsk = ṙk dT + (wk × ck) dT = ṙk dT +
(
ψ̇ dT

)
ek × ck

= drk + (dψ ek) × ck = drk + dπ̃ × ck. (10)

Equation (10) highlights that the first-order differential d π̃ =
dψek represents the rotation by angle dψ about a constant axis,
namely the instantaneous axis of rotation, ek.

It only remains to relate the first-order differentials in Equa-
tion (9) to virtual displacements, and virtual work, respectively.
As described in [12] (p. 241), the virtual displacement δx of
any vector x can be seen as the first-order differential of x with
time kept constant, t = constant. Since Equation (9) is already
independent of time, it suffices to replace all differentials d by
virtual displacements δ:

δsk = δrk + δπ̃k × ck. (11)

Calculation of the desired virtual work term requires only simple
algebraic transformations:

δWk = fk · δck = fk · (δrk + δπ̃k × ck)
= fk · δrk + fk · (δπ̃k × ck)
= fk · δrk + δπ̃k · (ck × fk)︸ ︷︷ ︸

mk

= fk · δrk + mk · δπ̃k,

where mk is the moment at point Pk resulting from force fk

applied at reference point Rk.

331



Thus Equation (7) can be written directly in the desired
form, containing the quasi-coordinates:

δW =
∑

fk · δrk + mk · δπ̃k

=
∑[

fk
mk

]
·
[
δrk

δπ̃k

]
= 0, (12)

where each term fk,mk denotes a force and/or moment applied
at body k and δrk and δπ̃k represent any motion of that
body in accordance with the constraints. In summary, it is
therefore permissible to use the quasi-coordinates, π̃, as virtual
displacement δπ̃ in the way indicated in Equation (12) and used
by many authors [9, 10, 6, 11].

While the use of Equation (12) is straightforward and well
discussed [9, 10, 6, 11], a simple example of its application is
given in Subsection 4.2 for completeness.

3.3 Lagrange’s Equations for True Coordinates (Standard
Form)

To apply Lagrange’s equations in the standard form,
one must start out with a set of generalized coordinates,
q = [q1, . . . , qn]T , which may not include quasi-coordinates.
One may choose to use position vector, r, Euler angle vector, φ,
plus, if desired, other coordinates:

q = [rx, ry, rz , φ1, φ2, φ3, plus others as desired]T .

The well-known Lagrange’s equations can then be written in
vector form as follows:

d

dt

(
∂T

∂q̇

)
−
(
∂T

∂q

)
+
(
∂V

∂q

)
= Q + BT λ, (13)

with constraint equation

c(q) = 0.

Q denotes the vector of generalized forces, λ are Lagrange
multipliers and B is the constraint matrix. (Of course, λ and
B appear only in Equation (13), if the number of generalized
coordinates exceeds the number of degrees of freedom of the
system. Matrix B is obtained from constraint vector c(q) as
B = ∂c

∂q , which is also known as the Jacobian of c(q).)
However, taking derivatives, such as ∂

∂φ̇i
(T ), where T now

contains terms such as

1
2

wT IPF w =
1
2

φ̇
T

BT (φ) IPF B(φ) φ̇,

and IPF is the tensor of inertia of the body, leads to complex ex-
pressions. Taking these derivatives is not difficult, but handling
the resulting terms is messy. (An example is given in Subsection
4.3.) Therefore, Lagrange’s equations in standard form are rarely
used to model parallel manipulators with full three degrees-of-
orientation at the end-effector.

3.4 Lagrange’s Equations for Quasi-Coordinates
(Boltzmann-Hamel Equations)

Lagrange’s equations can be modified to apply to quasi-
coordinates, as described for example by Whittaker [1] (pp.
41-44) and by Meirovitch [13] (pp. 157-160). The resulting
equations are often called the Boltzmann-Hamel equations
[1]. Meirovitch [13] provides an excellent description of the
derivation. While Lagrange’s equations for true coordinates
are discussed extensively in most dynamics textbooks, the
Boltzmann-Hamel equations receive much less attention.
Therefore they are discussed in this subsection in greater detail
than some of the other methods.

Basically, one starts with Lagrange’s equations for true
coordinates in the form

d

dt

(
∂T

∂q̇

)
−
(
∂T

∂q

)
+
(
∂V

∂q

)
= Q, (14)

where T = T (q, q̇) describes the system’s kinetic energy in
terms of generalized coordinates q. The goal is to rewrite
Equation (14) in terms of a new function, T̄ = T̄ (q, ˙̃p), which
expresses the kinetic energy in terms of true coordinates q and
quasi-velocities ˙̃p. Here ˙̃p may denote any vector of quasi-
velocities that can be related to q̇ by an invertible matrix, D,
as follows:

˙̃p = DT q̇, q̇ = D−T ˙̃p. (15)

where matrix D = D(q) is a function of q.

The case of interest here is ˙̃p =
[

ṙ
w

]
, since the kinetic

energy can then be written directly in the convenient form,

T̄ = T̄ (q, ˙̃p) = T̄

([
r
φ

]
,

[
ṙ
w

])
.

Employing Equation (15) repeatedly to relate the partial deriva-
tives of T to those of T̄ (see [13] for details), leads to a first
version of Lagrange’s Equations for Quasi-Coordinates:

D d

dt

(
∂T̄

∂ ˙̃p

)
+ E

(
∂T̄

∂ ˙̃p

)
−
(
∂T̄

∂q

)
+
(
∂V

∂q

)
= Q, (16)

where matrix E is defined in terms of its row vectors as

E =


(

˙̃p
T
D−1

)(
∇qd1 − ∂D

∂q1

)
...(

˙̃p
T
D−1

)(
∇qdn − ∂D

∂qn

)
 ,

wherein di denotes the ith vector of matrix D and matrix (∇qdi)
denotes di’s gradient with respect to q. By multiplying Equation
(16) by D−1 from the left, one obtains the more common form:

d

dt

(
∂T̄

∂ ˙̃p

)
+D−1E

(
∂T̄

∂ ˙̃p

)
−D−1

(
∂T̄

∂q

)
+D−1

(
∂V

∂q

)
= N ,

(17)
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where N = D−1Q are the generalized forces corresponding
to ˙̃p, just as Q are the generalized forces corresponding to q̇ in
Equation (14). Equation (17) is known as Lagrange’s equations
for quasi-coordinates or as Boltzmann-Hamel equations.

For the case of interest, ˙̃p =
[

ṙ
w

]
, we get the following

simplifications:

D =
[

Id3×3 0
0 B(φ)T

]
,

D−1 =
[

Id3×3 0
0 B(φ)−T

]
, (18)

and algebraic transformations yield

D−1 E =
[

0 0
0 Ω

]
, (19)

where Ω is the skew-symmetric matrix corresponding to angular
velocity w, i.e. Ωy = w × y for any vector y. Thus Equation
(17) simplifies to a very convenient form:

d

dt

(
∂T̄

∂ ˙̃p

)
+
[

0 0
0 Ω

](
∂T̄

∂ ˙̃p

)
−D−1

(
∂T̄

∂q

)
+D−1

(
∂V

∂q

)
= N .

(20)

Its use is demonstrated in Subsection 4.4.

3.5 Gibbs-Appell Equations for Quasi-Coordinates

Yet another tool from analytical mechanics that deals with quasi-
coordinates in an effective way is the Gibbs-Appell Equations
for quasi-coordinates, see for example [2] (pp. 347-364), which
are also often referred to as Appell Equations [14]. For the
Gibbs-Appell equations, one starts out with a set of generalized
coordinates, γ̃, which may contain quasi-coordinates. The
system is described in terms of the Gibbs-Appell function, S,
(an expression which is often referred to as the ‘energy of
acceleration’) and, similarly to Lagrange’s equations above, the
equations of motion are calculated by taking derivatives, and
setting them equal to generalized forces Γ:

∂S

∂ ¨̃γ
= Γ.

A significant difference, however, is that derivatives are only
taken with respect to the quasi-accelerations, ¨̃γ, but neither with
respect to quasi-coordinates nor to quasi-velocities. Therefore
this method is very suitable for application to quasi-coordinates.
This method is illustrated in Section 4.5 below.

4 Application to Simplified Gough-Stewart Platform

This section derives the equations of motion using the previously
described techniques for a simple example, namely a Gough-
Stewart platform with the following assumptions:

f
applied

PF
applied

m PF

iR b

if

inertia
m PF

PFf
inertia

f i-1

z

y

x
o

PFf
grav
o’

Figure 2: Free body diagram of the mobile platform

• The legs are massless, so that the only significant mass
belongs to the moving platform.

• Consequently, inertia and gravitational forces and moments
arise only from the moving platform.

• The origin of the body-fixed coordinate system on the
moving platform is chosen to be at the center of mass of
the platform. Thus, gravitational force and linear inertia do
not cause any moment.

• The actuator torques in the legs are transferred as pure
forces at the leg attachment points at the end-effector.

• An external force and moment is applied at the platform’s
center-of-mass.

While the leg masses are assumed negligible throughout this
section for the sake of simplicity, comments are included on how
to extend the model to incorporate the mass of any other moving
bodies in the system (including leg masses).

The following variables are used throughout this section:

m, IPF: Mass and inertia matrix of mobile platform;

r: Location of center of mass of mobile platform;

R: Rotation matrix describing orientation of mobile platform;

w: Angular velocity of mobile platform;

bi: Vector from platform’s center of mass to attachment point
of ith leg (in local platform coordinates);

fi: Actuator force in ith leg;

f grav
PF : Gravitational force of mobile platform;

f inertia
PF , minertia

PF : Inertia force and moment of mobile platform at
center-of-mass;

f applied
PF , mapplied

PF : External force and moment applied at platform’s
center-of-mass.
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4.1 Newton-Euler

Figure 2 shows a free-body diagram of the mobile platform. The
balance of forces and moments at the platform results in two
vector equations:

f applied
PF + f grav

PF + f inertia
PF︸ ︷︷ ︸

fPF

+
6∑

i=1

fi = 0

mapplied
PF + 0 + minertia

PF︸ ︷︷ ︸
mPF

+
6∑

i=1

(Rbi) × fi = 0

where

f grav
PF = −m g ez

f inertia
PF = −m r̈

minertia
PF = − [IPFẇ + w × (IPFw)]

and the terms
∑6

i=1 fi and
∑6

i=1 (Rbi) × fi can be related to
the geometric Jacobian matrix, JG, as follows (based on the fact
that leg inertia is ignored):[ ∑6

i=1 fi∑6
i=1 (Rbi) × fi

]
= JT

G τ .

Thus the two vector equations can be combined into the follow-
ing equation:[

f applied
PF

mapplied
PF

]
+
[
−mgez

0

]
+
[

−mr̈
−IPFẇ−w×(IPFw)

]
+JT

G τ = 0. (21)

Summary for Newton-Euler: The method of Newton-Euler is
straight-forward and does not employ quasi-coordinates in any
way, although angular velocity vectors are used in the equations
of motion.

Extension - If other moving bodies are to be considered: It
is well known that the method of Newton-Euler extends easily to
more complex cases, where the mass and inertia of many moving
bodies is considered. For details, see for example [15, 6].

4.2 Virtual Work

The principle of virtual work is commonly written for simple
parallel manipulators as follows:

δW =
[

fPF

mPF

]T

δx + τT δθ = 0, (22)

where fPF,mPF denotes the sum of forces and moments acting on
the mobile platform defined in Subsection 4.1. However, as we
already know from Subsection 3.2, δx takes the role of vector

δx̃ =
[
δr
δπ̃

]
. Equation (22) thus really implies:

δW =
[

fPF

mPF

]T [
δr
δπ̃

]
︸ ︷︷ ︸

δx̃

+τT δθ = 0. (23)

Substituting the terms for the forces and moments acting on the
mobile platform yields

δW =
[

f applied
PF +f grav

PF +f inertia
PF

mapplied
PF +minertia

PF

]T [
δr
δπ̃

]
+ τ T δθ = 0.

By substituting the relationship

δθ = JG

[
δr
δπ̃

]
and eliminating δr, δπ̃, we obtain the well-known relationship:[

f applied
PF +f grav

PF +f inertia
PF

mapplied
PF +minertia

PF

]
+ JT

G τ = 0,

which, after substitution of all terms, is identical to Equation
(21).

Summary for Virtual Work: The principle of virtual work is
also straight-forward to apply and yields equations of the same
form as the method of Newton-Euler. However, for this method
it was necessary to employ quasi-coordinates for the virtual
displacements. This is a subtle detail that is rarely mentioned
and the proof of correctness of this approach is neither trivial nor
completely obvious.

Extension – If other moving bodies are to be considered: It
is well known that the principle of virtual work extends easily to
more complex cases, where the mass and inertia of many moving
bodies is considered. The equations are then written in the form:

δW =
[

fPF

mPF

]T

δx̃PF +
J∑

j=1

[
fj
mj

]T

δx̃j + τ δθ = 0,

where x̃j denotes the quasi-coordinates for the jth body, and
fj ,mj denote the forces and moments acting on the jth body.
The quasi-coordinates of the ith body are related to the quasi-
coordinates at the end-effector through leg Jacobian matrices,
δx̃j = Jiδx̃. For details, see [9, 10, 6, 11].

4.3 Lagrange’s Equations for True Coordinates (Standard
Form)

For the simplified Gough-Stewart platform considered here there
is only one moving body, so the position and Euler angles
can be used as a minimal set of generalized coordinates, q =[
rT ,φT

]T
= [rx, ry , rz, φ1, φ2, φ3]

T . The potential energy

results as:

V = mgrz. (24)

Employing the relationship w = B(φ)φ̇, the kinetic energy for
the mobile platform can be expressed as

T =
1
2
m ṙT ṙ +

1
2

wT IPF w

=
1
2
m ṙT ṙ +

1
2

φ̇
T

BT IPF B φ̇. (25)
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Lagrange’s equations take the form

d

dt

(
∂T

∂q̇

)
−
(
∂T

∂q

)
+
(
∂V

∂q

)
= Q,

or

d

dt

 ∂T

∂
[

ṙ
˙φ

]
−

 ∂T

∂
[

r
φ

]
+

 ∂V

∂
[

r
φ

]
 = Q. (26)

Based on Equation (25), the first term results in:

d

dt

 ∂T

∂
[

ṙ
˙φ

]
 =

d

dt

[
m ṙ

BT IPF B φ̇

]

=
[

m r̈
ḂT IPFBφ̇ + BT IPFḂφ̇ + BT IPFBφ̈

]
The other terms result as: ∂T

∂
[

r
φ

]
 =

[
0

1
2 φ̇

T
(

∂

∂φ
B
)T

IPFBφ̇ + 1
2 φ̇

T
BT IPF

(
∂

∂φ
B
)

φ̇

]
,

 ∂V

∂
[

r
φ

]
 =

[
mg ez

0

]

and

Q =
[

Id3x3 0
0 BT

] [
f applied

PF

mapplied
PF

]
+ JT

A τ

=
[

Id3x3 0
0 BT

]([
f applied

PF

mapplied
PF

]
+ JT

G τ

)
.

It remains to substitute the above terms into Equation (26), where
some of the sub-terms actually cancel. However, the remaining
terms are still of very high complexity.

Summary for Lagrange’s Equations in Standard Form: This
example demonstrates that while using the Euler angles as gener-
alized coordinates in the standard form of Lagrange’s equations
is generally possible, it leads to unnecessarily complex equations
that are unsuitable for the dynamic modeling of mechanisms of
this type.

Extension – If other moving bodies are to be considered:
If additional moving bodies are to be considered, it is often
convenient to use more generalized coordinates than the number
of degrees-of-freedom of the system, which can be handled
through the use of Lagrange multipliers, see Equation (13).

4.4 Lagrange’s Equations for Quasi-Coordinates
(Boltzmann-Hamel Equations)

This subsection seeks to demonstrate that it is much more
convenient to use Lagrange’s Equations for Quasi-Coordinates

for this problem, rather than Lagrange’s Equations for true
coordinates.

Euler angles are employed to describe the orientation of

the moving platform, q =
[

r
φ

]
, while in contrast to the

preceding subsection, the angular velocity vector is used directly

to describe the platform’s velocity, ˙̃p =
[

ṙ
w

]
. Equation (20)

from Subsection 3.4 thus directly applies and is repeated for
convenience below:

d

dt

(
∂T̄

∂ ˙̃p

)
+
[

0 0
0 Ω

](
∂T̄

∂ ˙̃p

)
−D−1

(
∂T̄

∂q

)
+D−1

(
∂V

∂q

)
= N ,

where D−1 is given by Equation (18). The potential energy,
V (q), is given by Equation (24), and the kinetic energy is given
by Equation (25), but the latter is now viewed as a function of q
and ˙̃p:

T̄ (q, ˙̃p). = T̄

([
r
φ

]
,

[
ṙ
w

])
=

1
2
m ṙT ṙ+

1
2

wT IPF w.

The derivatives results as

∂V

∂q
=

[mgez

0

]
,

∂T̄

∂q
=
[
0
0

]
∂T̄

∂ ˙̃p
=

[
mṙ
Iw

]
,

d

dt

(
∂T̄

∂ ˙̃p

)
=
[
mr̈
Iẇ

]
,

and Equation (20) becomes[
mr̈
Iẇ

]
+
[

0 0
0 Ω

] [
mṙ
Iw

]
−D−1

[
0
0

]
+D−1

[mgez

0

]
=[

f applied
PF

mapplied
PF

]
+ JT

G τ ,

which simplifies further to[
mr̈ +mgez

Iẇ + w × (Iw)

]
=
[

f applied
PF

mapplied
PF

]
+ JT

G τ ,

which is identical to Equation (21).

Summary for Boltzmann-Hamel Equations: Using the
Boltzmann-Hamel Equations is a much more efficient way to
deal with quasi-coordinates than using Lagrange’s equations
for true coordinates. Thus, out of these two, the Boltzmann-
Hamel equations are the better choice to model general parallel
manipulators.

Extension - If other moving bodies are to be considered:
One possibility to include other moving bodies is to include
include the corresponding variables for each body in vectors q
and ˙̃p. Constraint equations and Lagrange multipliers are then
used to eliminate the additional degrees-of-freedom.
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4.5 Gibbs-Appell Equations

For this simple example, the generalized coordinates can be

chosen as γ̃ =
[

r
π̃

]
. The Gibbs-Appell function for a

general rigid body is then applied to the mobile platform of the
manipulator:

S =
1
2
m aTa +

1
2
αT (IPFα) + αT (w × IPFw) ,

where

a =

 r̈x
r̈y
r̈z

 , α =

 ω̇x

ω̇y

ω̇z

 .
The Gibbs-Appell equations state that

∂S

∂γ̈
= Γ, (27)

where Γ corresponds to the generalized forces in the expression
for virtual work given by δW = Γ · δ γ̃:

Γ = Γgrav + Γapplied + Γactuators =
[
−mgez

0

]
+
[

f applied
PF

mapplied
PF

]
+ JT

Gτ .

Evaluating the derivative, ∂S

∂ ¨̃γ
, leads to

∂S

∂ ¨̃γ
=

∂

∂

[
r̈
ẇ

] (1
2
m r̈T r̈ +

1
2
ẇT (IPFẇ) + ẇT (w × IPFw)

)

=
[

m r̈
IPFẇ + w × IPFw

]
.

Substituting the resulting terms for Γ and ∂S

∂ ¨̃γ
into Equation (27)

yields:[
m r̈

IPFẇ + w × IPFw

]
=
[

−mgez

0

]
+
[

f applied
PF

mapplied
PF

]
+ JT

Gτ ,

which is also identical to Equation (21).

Summary for Gibbs-Appell Equations: The Gibbs-Appell
equations provide another simple alternative to derive the equa-
tions of motion. A very interesting property of this method is that
while it it employs quasi-coordinates as generalized coordinates,
γ̃, derivatives are only taken with respect to ¨̃γ. Thus quasi-
coordinates can be used without any complication.

Extension - If other moving bodies are to be considered:
Several techniques can be used to include the effects of the mass
and inertia of other moving bodies in the equations. One method
is to use Lagrange multipliers as follows: Extend the vector
γ̃ to also include the quasi-coordinates for the other moving

bodies. Then account for the extra coordinates through the use
of Lagrange multipliers:

∂S

∂ ¨̃γ
= Γ + BT λ

with a constraint equation of the form

c
(
γ̃, ˙̃γ,φ

)
= 0.

5 Discussion of Results

For a simplified Gough-Stewart platform, the method of Newton-
Euler, the principle of virtual work, the Boltzmann-Hamel equa-
tions and the Gibbs-Appell equations were shown to yield the
same equations of motion. The equations of motion obtained by
applying Lagrange’s Equations (in standard form) must theoret-
ically result in equivalent equations of motion, but the equations
actually obtained by that method, even for this simple example,
were too complex to even be compared. Thus Lagrange’s
equations in their standard form appear to be less suitable due
to greater complexity of the resulting expressions, but other
methods, such as the Boltzmann-Hamel equations and the Gibbs-
Appell equations appear to be more suitable.

There is one point that has been neglected in the derivation
of the equations of motion that deserves special attention. For
all of the formulations of the equations of motion that include
w in the final expressions, i.e. for all of the formulations with
the exception of Lagrange’s equations for true coordinates, the
forward dynamics are not uniquely solvable without additional
equations. The additional set of required equations is given by
the velocity relationship in (6). Therefore the actual equations of
motion are those given in the previous sections plus the velocity
relationships, Eq. (6). To evaluate the forward dynamics this full
set of equations of motion can then be solved simultaneously
using standard differential equation solution techniques.

6 Conclusions

This manuscript reviewed the role of quasi-coordinates for the
kinematic and dynamic modeling of parallel manipulators. It was
shown that quasi-coordinates play a central role for determining
which methods of analytical mechanics can be applied to general
parallel manipulators. Some of the key statements are:

• The principal of virtual work applies in spite of the fact that
quasi-coordinates, rather than true coordinates, are used as
virtual displacements;

• Lagrange’s equations in their standard form are unsuitable
due to unnecessary complexity, but other methods of analyt-
ical mechanics, such as the Gibbs-Appell equations and the
Boltzmann-Hamel equations should be investigated further.

This manuscript only provides an overview of some of the
methods and the reader is referred to the references for further
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in-depth discussions and further examples. Furthermore, this
list is certainly not complete (for example it did not include
Jourdain’s principle/Kane’s method) and the authors would be
grateful for references to additional techniques. Nevertheless,
it is hoped that the discussion serves as a starting point to
strengthen the connection between analytical mechanics and
parallel manipulator research.
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APPENDIX

This section provides a very simple counter example that demon-
strates why the integral, π̃, of w can generally not be used to
track the orientation of a moving body. Consider the following
two trajectories:

• Trajectory 1: From an initial orientation, rotate a body
about the global x-axis for 1 second at velocity ωx = 90
degrees/second. Then rotate the body for 1 second about the
global y-axis at equal velocity, ωy = 90 degrees/second.
Integration result: Integrating w over this trajectory results
in π̃ = [90, 90, 0] degrees.

• Trajectory 2: From the initial orientation, proceed as in
Trajectory 1, but with reversed order, i.e. rotate first about
the global y-axis, then about the global x-axis.
Integration result: Integrating w over this trajectory results
in π̃ = [90, 90, 0] degrees.

Obviously, the orientation of the body at the end of Trajectory
1 differs from that of Trajectory 2. (Thus the Euler angles, φ,
differ between the two cases.) However, π̃ is identical in both
cases. Thus π̃ does not contain sufficient information to recover
the orientation of the body, since the order of rotations taking
place is lost.

A noteworthy exception to the above observation is the case
of rotation about a single, constant axis. In that case, w(t) can
be described as w(t) = ψ̇ e, where e is a constant unit vector
denoting the axis of rotation and ψ̇ = ψ̇(t) is the angular speed.
Integration results in

∫
w(t)dt =

∫
ψ̇(t) edt = ψ(t) e, which

of course is sufficient to denote the orientation and is known as
exponential or axis-angle coordinates [16].
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Abstract: Dynamic analysis is the basic element of mechani-
cal design and control of mechanisms. This work intends to
address dynamic methods relevant to parallel robots and mech-
anisms from a unified analytical point of view, which is based
on differential variational principles. In this framework, many
approaches can be discussed, and new directions can be high-
lighted that can contribute to the better understanding of dy-
namic behavior. The work intends to point out the areas and
methods where further exploration is necessary to shed light on
applications related to parallel machines. The paper also deals
with some of the important problems in the dynamics of parallel
robots in space applications.

1 Introduction

Research on parallel manipulators have been mainly focused on
kinematics related issues. As Tsai [18] noted, relatively fewer
works are available on the dynamics of parallel robots. Text-
books discussing parallel systems have a relatively limited scope
on dynamics of parallel robots. Dynamics effects and analysis
are however the basis of design specifications and advanced con-
trol of parallel mechanical systems. Particularly, heavy duty ap-
plications (e.g. docking mechanisms and simulators, manufac-
turing machinery) have a high need for in-depth dynamics in-
vestigations. We feel that in order to increase the applications
and practical use of parallel robots, the dynamics methods for
such systems should receive more attention. There are current re-
search activities at the Canadian Space Agency to address some
of the problems of the dynamics of parallel structures. This pa-

per intends to give a brief background on the dynamics methods
and problems felt important and relevant to parallel systems.

In the analysis of robotic systems, it is usual to distinguish
between inverse and forward dynamics. A significant portion of
the published papers on dynamics of parallel robots deals with
the inverse dynamics problem, e.g., Dasgupta and Mruthyunjaya
[6], Geike and McPhee [9], Li et. al. [11], Tsai [18], Wang
and Gosselin [21]. Inverse dynamics formulations are necessary
for advanced model based control. The proposed approaches are
usually effective, but they require a structure specific kinematic
analysis, also the mass matrix is usually not expressed explicitly.
In inverse dynamics, the explicit expression of the mass matrix
is not required, but if we want to perform simulations and solve
the forward dynamics problem then this quantity becomes neces-
sary. Another important aspect that was addressed in Geike and
McPhee [9] is the potential use of symbolic calculations in dy-
namic analysis. The generation of dynamic equations of parallel
systems in symbolic form could be quite advantageous in both
control and mechanical design related problems. The key for ef-
ficient handling of parallel systems dynamics lies in the in-depth
understanding of constrained systems and methods.

In terms of modeling and analysis, the main difference be-
tween serial and parallel mechanisms is the presence of addi-
tional constraints, which ensure the forming of closed kinematic
chains within the system. Handling constraints is the key issue
in dynamics investigations of parallel systems (in both inverse
and forward dynamics analysis of parallel structures). We intend
to summarize some of the methodologies of constrained system
dynamics that can be effectively used in parallel mechanical sys-
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tems. We will follow a unified approach for discussing the meth-
ods. This approach is based on differential variational principles
as fundamental physical laws of constrained systems.

2 Differential Variational Principles of Constrained Sys-
tems

Let us assume that we study a mechanical system that is sub-
jected to bilateral constraints. The fundamental ideas of con-
strained systems can be briefly summarized by using the generic
differential variational equation∫ [

(dm�̈r − �fimpressed − �fconstraint) · δ�̂r
]

= 0, (1)

wheredm is a mass element of the constrained system, the sum
�fimpressed + �fconstraint represent the resultant force acting on
the mass element,

∫
[..] represents the summation (integration)

over the mass elements of the system (discrete or distributed pa-
rameter systems [10]), andδ�̂r will be called a kinematic varia-
tion. The physical definition of the kinematic variation can be
done based on the particular differential variational principle ap-
plied: Lagrange’s principle or the principle of virtual work (vir-
tual displacements), Jourdain’s principle (velocity variations or
virtual velocities) or Gauss’ principle (acceleration variations)
(see e.g. Papastavridis [13] or Kövecses and Cleghorn [10] for
further details and references). Virtual displacements represent
infinitesimal coordinate variations that connect two configura-
tions kinematically possible for the same time instant, velocity
variations connect two velocity states of the system that are kine-
matically possible for the same time instant and configuration,
and acceleration variations connect two acceleration states of the
system that are both kinematically possible for the same time,
configuration, and velocity state. Velocity and acceleration vari-
ations do not have to be infinitesimal quantities for linear ve-
locity constraints. Detailed description of differential variational
principles and kinematic variations can be found in Papastavridis
[14].

A fundamental idea of constrained systems, as expressed in
the above equation, is the decomposition of the forces acting on
a mass element of the system to impressed and constraint forces
(Papastavridis [14], Rosenberg [16]) . Impressed forces are also
often called applied or active forces. Using this decomposition,
the basic principle of constrained systems, which is the essence
of differential variational principles, can be stated as: the total-
ity of the products of constraint forces and kinematic variations
admissible with the constraints vanishes. This product is usu-
ally equivalent to a variation (virtual change) in the power (or its
time integral or differential depending on what definition is used
for the kinematic variations) of the constraint forces. It can be
expressed as ∫ [

�fconstraint · δ�̂r
]

= 0. (2)

At a generic level and very briefly, these are the basic ideas nec-
essary for the investigation of constrained systems. It is impor-

tant to note the significance of the differential variational ap-
proach in constrained systems. In recent years, there have been
several types of formulations proposed for constrained systems.
It is, however, often forgotten that the basic law of constrained
systems, as expressed by equation (2), originates from differen-
tial variational principles. Constraint forces do develop power
in many cases (e.g. rheonomic, acatastatic constraints). It is the
virtual change in this power (or in its time integral or differen-
tial) due to admissible kinematic variations, which vanishes for
all types of constraints. To illustrate this, we can consider for
example a simple system of a point mass, the motion of which is
constrained to a predefined trajectory,f(t). This imposes holo-
nomic, rheonomic constraints on the motion of the point mass.
In this case, the constraint forces must develop power to move
the point mass along this trajectory. But, it is relatively easy to
show that the virtual change in this power (due to a Jourdainian
velocity variation for instance) would always vanish. Further de-
tails on the actual and virtual power and work of constraint forces
can be found in Bahar and Kwatny [4], and Papastavridis [14] for
example.

Differential variational principles are necessary to develop
a deeper understanding in constrained systems, and in the de-
velopment of various methods for the analysis of these systems.
Another important characteristic of differential variational prin-
ciples is that they are invariant under transformations from one
possible set of variables to another. Thus, these principles also
give the means for transformation between the different sets of
variables possible for the description of the system. In the fol-
lowing, we will apply these concepts to derive and characterize
methods for general, parallel kinematic structures.

3 Fundamental Representation for Parallel Systems

A basic idea in parallel structures is that they can be composed of
open-loop sub-systems that are connected to each other by con-
straints. The closed form system of dynamic equations of each
open-loop sub-system can be derived using numerical or sym-
bolic approaches (e.g., Piedbœuf [15]). They can include rigid
or flexible bodies. Let us assume that this way the system com-
prisesh open loops, and the total number of degrees of freedom
of all these loops isn. The fundamental equation of differen-
tial variational principles can then be written for thisopen-loop
systemas

δq̂T (Qinertial − Qimpressed)

= δq̂T (Mq̈ + C(q̇,q, t) − Qimpressed) = 0, (3)

whereQinertial represents ann × 1 array of the generalized in-
ertial forces,Qimpressed is then × 1 array of the generalized
impressed (or applied) forces of the system,M is then×n mass
matrix of the system,q is then × 1 array representing the gen-
eralized coordinates of the open-loop system,C is the n × 1
array of the nonlinear inertial effects (Coriolis and centrifugal
effects),δq̂ represents then × 1 array of generalized kinematic
variations. As was mentioned in Section 2, kinematic variations
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can be either virtual displacements (Lagrange’s principle) or ve-
locity variations (Jourdain’s principle) or acceleration variations
(Gauss’ principle). The generalized impressed forces include the
actuator forces or torques, external loads and potential friction
effects in the joints. The decomposition of the generalized iner-
tial forcesQinertial = Mq̈ + C(q̇,q, t) does not always have
to be done. For example, in inverse dynamics it can be more ad-
vantageous to establish and deal withQinertial directly without
forming the mass matrix and calculating Coriolis and centrifugal
effects separately. From the analytical mechanics point of view,
the components of the generalized inertial forces can be repre-

sented asQinertiali = d
dt

(
∂T
∂q̇i

)
− ∂T

∂qi
= ∂G

∂q̈i
(i = 1, ..., n),

whereT is the kinetic energy function of the system andG is the
Gibbs-Appell function.

q

q

q

1

2

3

x

y

x

y

e

e

End effector reference frame

Figure 1: A three-link mechanism consisting of three beams con-
nected by rotational joints

As an example for the generalized inertial forces, we can
consider the three-link arm shown in Figure 1, and assume that
the links are modeled as rigid beams. In this case,

Qinertial =


 Qinertial1

Qinertial2

Qinertial3


 (4)

and the three components of the generalized inertial forces can
be obtained as

Qinertial1 =[
I1 + m2�

2
1 + 2m2�1xCM2 cos(q2) + I2 + m3�

2
1

+2m3�1�2 cos(q2) + m3�
2
2

+ 2m3�1xCM3 cos(q2 + q3) + 2m3�2xCM3 cos(q3) + I3] q̈1

+
[
I2 + m2�1xCM2 cos(q2) + m3�1�2 cos(q2) + m3�

2
2 + I3

+m3�1xCM3 cos(q2 + q3) + 2m3�2xCM3 cos(q3)] q̈2

+ [I3 + m3�1xCM3 cos(q2 + q3) + m3�2xCM3 cos(q3)] q̈3

+ (−m2�1xCM2 − m3�1�2) (q̇1 + q̇2)
2 sin(q2)

+ (m2�1xCM2 + m3�1�2) q̇2
1 sin(q2)

+
(
m3�1xCM3 q̇

2
1 − m3�1xCM3(q̇1 + q̇2 + q̇3)2

)
sin(q2 + q3)

+
(
m2�2xCM3(q̇1 + q̇2)2 − m3�2xCM3(q̇1 + q̇2 + q̇3)2

)
sin(q3),

Qinertial2 =[
I2 + m2�1xCM2 cos(q2) + m3�1�2 cos(q2) + m3�

2
2 + I3

+m3�1xCM3 cos(q2 + q3) + 2m3�2xCM3 cos(q3)] q̈1

+
[
I2 + m3�

2
2 + I3 + 2m3�2xCM3 cos(q3)

]
q̈2

+ [I3 + m3�2xCM3 cos(q3)] q̈3

+ (m2�1xCM2 + m3�1�2) q̇2
1 sin(q2)

+m3�1xCM3 q̇
2
1 sin(q2 + q3)

+
(
m3�2xCM3(q̇1 + q̇2)2 − m3�2xCM3(q̇1 + q̇2 + q̇3)2

)
sin(q3),

Qinertial3 =
[I3 + m3�1xCM3 cos(q2 + q3) + m3�2xCM3 cos(q3)] q̈1

+ [I3 + m3�2xCM3 cos(q3)] q̈2 + I3q̈3

+m3�1xCM3 q̇
2
1 sin(q2 + q3) + m3�2xCM3(q̇1 + q̇2)2 sin(q3),

wherem1, m2, m3 are the masses of the links,I1, I2, I3 are
the moments of inertia of the links about the point where they
are connected to the preceding link in the chain (this point is
the origin of the local frame attached to the link, where the
xi axis of the local frame (i = 1, ..., 3) is directed parallel to
the main axis of the beam), andxCM1 , xCM2 , xCM3 are the
locations of the center of mass of each link in the local coor-
dinate frames. Instead of the center of mass, it is often use-
ful to usem1xCM1 , m2xCM2 , m3xCM3 as dynamic parameters,
which can be identified as the first moments of inertia about the
origins of the local frames.

Since the system is first represented without the loop closure
constraints, each of the arrays and matrices in (3) can be parti-
tioned toh blocks representing the open-loop sub-system level
models, for example


 M1 . .

. M2 .

. . .


 ,


 q1

q2

.


 , ..... (5)

whereMi, qi represent the mass matrix and the generalized co-
ordinates of theith open-loop sub-system (i = 1, ..., h).

In order to form the model for the desired parallel system,
the closed-loop model, the constraints representing the loop clo-
sures need to be imposed on (3). Assume that there arem con-
straints for the loop closures (m may be equal toh in certain
cases). These constraints at the velocity level can be expressed
usually as

A(q, t)q̇ + b(q, t) = 0, (6)

whereA is them × n constraint Jacobian matrix. The loop clo-
sure constraints in parallel systems are holonomic constraints,
thus (6) can be integrated and expressed in the form of position
constraints as

Φ(q, t) = 0, (7)

whereA = ∂Φ
∂q andb = ∂Φ

∂t . For example, assume that we
investigate the three-link mechanism shown in Figure 1, but in-
stead of the open-loop structure we form a closed-loop system
by joining the end effector frame to a point fixed in the global
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coordinate system by employing a rotational joint. This loop-
closure condition can be expressed by two holonomic constraint
equations at the velocity level, whereb = 0 and

A =
[

A11 A12 A13

A21 A22 A23

]
(8)

where

A11 = −�1 sin(q1) − �2 sin(q1 + q2) − �3 sin(q1 + q2 + q3),
A12 = −�2 sin(q1 + q2) − �3 sin(q1 + q2 + q3),
A13 = −�3 sin(q1 + q2 + q3),
A21 = �1 cos(q1) + �2 cos(q1 + q2) + �3 cos(q1 + q2 + q3),
A22 = �2 cos(q1 + q2) + �3 cos(q1 + q2 + q3),
A23 = �3 cos(q1 + q2 + q3),

and these can be reduced to two geometric constraint equations
at the configuration level, in the form

Φ1 = �1 cos(q1) + �2 cos(q1 + q2) (9)

+�3 cos(q1 + q2 + q3) = 0,

Φ2 = �1 sin(q1) + �2 sin(q1 + q2) (10)

+�3 sin(q1 + q2 + q3) = 0.

Constraints impose additional generalized forces, constraint
forces, on then degree of freedom open-loop system to trans-
form it to the required closed-loop parallel system. These gener-
alized constraint forces can be represented with ann× 1 dimen-
sional array,Qconstraint, that needs to be added to the general-
ized forces, as per equation (1), and (3) becomes

δq̂T (Qinertial − Qimpressed − Qconstraint) = 0 (11)

If we require that the kinematic variations be admissible with the
constraints that results in the interdependence between them in
the form of

Aδq̂ = 0. (12)

This equation is of key importance in the dynamics investiga-
tions. It can be derived from equations (6) and (7) for all three
cases of kinematic variations (virtual displacements, velocity
variations, acceleration variations). For admissible kinematic
variations,

δq̂T Qconstraint = 0, (13)

which is the mathematical expression of the basic axiom of con-
strained systems, equation (2), for this formulation. Thus, equa-
tions (6), (11), (12) and (13) give the basis for the dynamics in-
vestigations of parallel structures, while equations (6) and (7) are
necessary for the kinematics analysis.

The methods for the dynamic investigation of the parallel
(constrained) system can be discussed and classified based on
several criteria. Here, we discuss one approach that is based on

the structure of the fundamental differential variational princi-
ples, that is represented by equations (3), (5) - (7), (11) - (13).
This basically covers most of the approaches used in parallel
structures, and opens up ways for developing new methods for
the dynamics investigations. Geometrical representation of the
above considerations and the methods discussed later is also pos-
sible by introducing the concept of the configuration manifold
and tangent space, but in this paper we would like to carry out
the discussion without differential geometric concepts.

As equation (11) shows, the variational principle can be ex-
pressed as product of generalized kinematic variations and gen-
eralized forces (inertial, impressed and constraint forces). For
the open-loop, unconstrained system we haven generalized ve-
locity componentṡq andn kinematic variationsδq̂. Equation
(11) is expressed in terms of these generalized variables of the
open-loop system. For this form, we will say that the system is
described using descriptor type variables.

The fundamental realm of the study of constrained system
dynamics is the methods how constraint forces and kinematic
constraints are handled and incorporated in the investigations.
From the structure of equations (11) - (13), it can be seen that
basically the kinematic variations and their interdependence de-
termine the potential approaches for further dynamic analysis.
Two major groups of approaches can be distinguished:

• Analysis using a new, independent set of kinematic varia-
tions, where the new set of variations is formed based on
equations (11) - (13).

• Analysis using the original, descriptor type set of kinematic
variations.

In the following we will briefly summarize methods pertaining
to these groups, and highlight some of the features related to
parallel systems. But, the detailed description and mathematical
formulation of the methods cannot be included in this short paper
(it will be available in a more detailed study).

3.1 Methods Using Independent Kinematic Variations

3.1.1 Independent Projections

Equation (12) imposesm constraints on then kinematic varia-
tions. Thus, in general, it is possible to introducen − m = s
new, independent kinematic variations so as

δq̂ = Bδû, (14)

whereδû is thes × 1 array of new independent kinematic vari-
ations, andB is ann × s matrix describing the transformation
between the original and new, minimum set of kinematic varia-
tions. The components ofδû can be linear combinations of the
elements ofδq̂. For example, for the loop closure equations of
the three-link arm, as was detailed above, there is only one inde-
pendent kinematic variation, and this can be selected asδû = δq̂1
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(Figure 1), and equation (14) for this case can be expanded as


 δq̂1

δq̂2

δq̂3


 =




1

−�1 sin(q2+q3)−�2 sin(q3)
�2 sin(q3)

�1�2 sin(q2)+�1�3 sin(q2+q3)
�2�3 sin(q3)




δq̂1. (15)

Equation (14) results in admissible kinematic variations that
satisfy equation (12). Substituting (14) into equation (11) we
obtain

δûT BT (Qinertial − Qimpressed − Qconstraint) = 0, (16)

and from this, using equation (13), the dynamic equations

BT (Qinertial − Qimpressed) = 0 (17)

are obtained. The major results with these transformations are
the elimination of the constraint forces and the reduction of the
number of dynamic equations to a minimum set. In multibody
dynamics, equation (17) is often referred to as a projection equa-
tion or method. We can also call it the partial embedding of the
constraints, since, independent kinematic variations are used, but
Qinertial is still based on the original descriptor set of variables
(q, q̇, q̈). This may be advantageous in several cases when the
selection and use of independent variables are cumbersome in
establishing the generalized inertial forces. On the other side,
however, because of the presence of the original, descriptor vari-
ables in the generalized inertial forces, equation (17) cannot be
solved in itself. In addition, the constraint equations (6) and their
time derivatives also need to be used to establish a complete set
of equations that is solvable (forward dynamics problem). How-
ever, this approach can be useful in solving the inverse dynamics
problem assuming thatq, q̇ andq̈ are known. The generalized
inertial forces,Qinertial, can be calculated and the equation (17)
can be used to solve for the actuator forces or torques that are
part of the array of impressed forces. Approaches pertaining
to this class has been used by several researchers to solve in-
verse dynamics for specific kinematic structures utilizing virtual
displacements as kinematic variations (principle of virtual work,
e.g. Wang and Gosselin [21], Tsai [18]).

3.1.2 Independent Generalized Velocities

A further step can be to introduce a new set of independent vari-
ables, and embed the constraints into the expression of the gener-
alized inertial forces, thus introduce a minimum number of com-
ponents for the generalized forces. For this, constraint equations
(6) and (7) need to be considered. For generic systems, it is usu-
ally more convenient to introduce the independent variables at
the velocity level. The selection of new, independent general-
ized coordinates are generally quite difficult due to the nonlinear
expression of the position level constraints (7). In some cases
it is possible to find closed form relation between independent
and dependent sets of coordinates using equation (7), in other

cases only iterative solution is possible. However, we need to
keep in mind that the dynamic equations are basically formu-
lated to determine the rate of change of the velocity components.
The coordinates describing the configuration are not the primary
variables in dynamics. Thus, from the dynamic equations the
velocity components can be determined and then, based on kine-
matic considerations, changes in configuration can be calculated
using the relation between equations (6) and (7). This basically
involves the integration of equation (6) to determine the changes
in generalized coordinates.

Let us consider that we introduce a new set of independent
velocity components based on equation (6). This will result in

q̇ = Bu̇ + d(q, t), (18)

whereu̇ is ans×1 dimensional array, and its components can be
linear combinations of the elements ofq̇, andd(q, t) is present
only if b(q, t) �= 0 in equation (6). Here, we selected the new ve-
locity components so as the matrix describing the transformation
from the new set to the original descriptor set,B, is identical to
the one used in the selection of independent kinematic variations.
This is usually convenient, but in principle, other selections of in-
dependent velocities would also be possible. Substituting equa-
tion (18) into equation (16) and considering the expression for
the generalized inertial forces (3), we obtain

Uinertial − BT Qimpressed

= BT MBü+BT M(Ḃu̇+ḋ)+BT C(u̇,q, t)−BT Qimpressed

= Mü + C(u̇,q, t) − BT Qimpressed = 0. (19)

This is a minimum set of dynamic equations (s equation) ex-
pressed in independent velocity components. It can be solved for
these velocity components (forward dynamics). Then the origi-
nal set of generalized velocities can be calculated based on equa-
tion (18), and the kinematics level analysis can be carried out
to determine changes in configuration. Generally, as shown in
equation (19) the descriptor set of coordinatesq still appears in
the formulation at the displacement level due to the nonlinear
nature of the loop-closure constraints. In specific cases, the in-
troduction of independent coordinates (u) can also be possible
based on equation (7). For generic cases, the steps of the trans-
formation described in equation (19) need to be followed, but for
several concrete examples, the direct determination ofM and
C(u̇,q, t) is also possible.

Using the minimum set of dynamic equations, the loop clo-
sure constraints are embedded at the dynamics level, the con-
straint forces are eliminated from the analysis, and the dynamic
analysis is carried out in independent velocity components. For
parallel manipulators, Angeles [2] introduced and discussed the
natural orthogonal complement that belongs to this class of ap-
proaches, where the kinematic structure of the system investi-
gated makes it possible to select matrixB in a relatively simple
form. This form requires only one matrix inversion numerically
to express the relation betweenq̇ andu̇.
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This class of approaches also offers the possibility to gen-
erate the closed form minimum set of equations symbolically
(using Maple or Mathematica), as can be done by manual
derivations for specific systems (e.g., Stewart-Gough platform).
The problem is generally, for both symbolic and numerical ap-
proaches, the efficient determination of the transformation be-
tween original, descriptor type and new, independent quantities
(matrix B). For general parallel systems, (that are usually con-
sidered for generation of computer codes) there is no methodol-
ogy available for selecting the independent variables and forming
the necessary transformations without numeric, linear algebraic
manipulations. For an arbitrary parallel system, these manipula-
tions are impossible to implement in symbolic form. However,
there are some promising results available for certain classes of
parallel manipulators (Geike and McPhee [9]). The applications
of these approaches should be further explored for parallel sys-
tems. The possibility that independent kinematic variations and
independent velocity components can be selected in different
ways may also have interesting potentials (using active or pas-
sive joint variables and their combinations). Methods recently
worked out for the Jacobian matrix of general parallel manipula-
tors (Monsarrat and Gosselin [12]) may also be further extended
to facilitate the symbolic ”closed-form” determination of matrix
B.

3.2 Methods Using Descriptor Type Kinematic Variations

The use of the original descriptor type kinematic variations opens
up two possibilities. One is to relax the constraints and then rein-
state them by using explicit expressions for the constraint forces,
and the other is to find a kinematically admissible set of kine-
matic variations using the decomposition of the original descrip-
tor set. First, we will discuss two approaches pertaining to the
relaxation of constraints: the Lagrangian multiplier method, and
the so-called force coupling method.

3.2.1 Lagrangian Multipliers

The Lagrangian multiplier technique is perhaps the best known
classical method to accommodate constraints using the original
set of variables and using explicit expressions for the constraint
forces. The constraint forces are expressed using the constraint
Jacobian and the Lagrangian multipliers in the form (Rosenberg
[16])

Qconstraint = AT λ, (20)

whereλ represents them × 1 array of the Lagrangian multipli-
ers that are only time dependent. Using this explicit expression
of the constraint forces, it is not necessary to employ admis-
sible kinematic variations in equation (11), i.e., the constraints
are relaxed in the differential variational principle. (Admissible
kinematic variations are necessary only if we want to eliminate
the constraint forces using the basic principle of equation (13).)
Thus, from equation (11)

Qinertial − Qimpressed − AT λ

= Mq̈ + C(q̇,q, t) − Qimpressed − AT λ = 0 (21)

This set of equation still contains the multipliers as additional un-
knowns, and can be solved along with the time derivative of the
constraint equations. This technique is frequently used in multi-
body software applications. It is, however, not very well suited
for inverse dynamics and symbolic considerations. There are
also several known problems with this approach for solving the
forward dynamics problem. Methods have also been suggested
to improve the computational performance (e.g. Baumgarte sta-
bilization, penalty functions). The classical Lagrangian multi-
plier technique works only for independent constraints, where
the constraint Jacobian matrix has a full row rank. An advantage
of this method is its easy use and implementation.

3.2.2 Explicit Force Coupling

The second approach using the idea of relaxation of constraints is
the so-called force coupling method (Schielen et al. [17], Wang
et al. [22]), when the constraint forces are virtually replaced
by impressed forces with the introduction of stiff springs and
dampers instead of the loop closure equations. The explicit ex-
pression for the constraint forces can be expressed as

Qconstraint = Kq + Dq̇, (22)

whereK is ann×n stiffness matrix that is introduced by placing
springs at the loop closure locations, andD is ann×n damping
matrix. We keep the term constraint force, but as was noted these
are basically impressed forces in this formulation that are intro-
duced to attempt to realize the constraints. Since the constraints
are fully relaxed, from equation (11), the dynamic equations for
this case can be obtained as

Qinertial − Qimpressed − Kq − Dq̇

= Mq̈ + C(q̇,q, t) − Qimpressed − Kq − Dq̇ = 0. (23)

The springs are supposed to ensure that the constraints are main-
tained with reasonable accuracy, also, the springs make possible
the explicit expression of the virtual work or power of the con-
straint forces. As was noticed in Wang et al. [22], this approach
makes possible parallel computational implementation relatively
easily. On the other hand, there can be several drawbacks. Some
of the problems with this approach is the appropriate determina-
tion of the spring constants and the fact that the springs introduce
high stiffness into the system that makes numerical solution diffi-
cult. Also, the determination of matricesK andD is difficult and
cannot always be done in a closed form. The ”artificial” springs
also pose the danger that the constraint forces may become ”ac-
tive”, i.e., influence the admissible motion of the system, which
would be physically incorrect.

3.2.3 Decomposition of Kinematic Variations, Independent
Projections in Descriptor Form

As was mentioned above, the second possibility for using the
original descriptor type kinematic variations is to find a kine-
matically admissible set using the decomposition of the original,
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descriptor set. Based on equation (12), it is possible to split the
array of generalized kinematic variations,δq̂, into two parts

δq̂ = δq̂c + δq̂a (24)

whereδq̂c is necessary to satisfy the constraints, andδq̂a is an
array admissible with the constraints, i.e., from the purely kine-
matic point of view it can take non-zero values without violating
the constraints. The elements of these two arrays are basically
linear combinations of the original kinematic variations,δq̂, and
these linear combinations can be determined based on the con-
straints (particularly the constraint Jacobian). This partition, and
the expression of the two new arrays can be done as

δq̂ = A†Aδq̂ + (I − A†A)δq̂, (25)

whereδq̂c = A†Aδq̂, δq̂a = (I−A†A)δq̂, I is ann× n iden-
tity matrix, andA† represents a generalized inverse ofA. Here,
the definition of the generalized inverse is closely related to the
geometric representation of a dynamic system, and the interpre-
tation of orthogonality for generalized vectors. In robotics and
multibody dynamics, the Moore-Penrose pseudo-inverse is of-
ten used for the generalized inverse to perform decompositions
similar to equation (25) (e.g. inverse kinematics of redundant
robots). However, this pseudo-inverse is usually not associated
with a physically meaningful, invariant norm of generalized vec-
tors of dynamics (particularly the generalized velocity vector).
This may lead to erroneous results in some cases (Duffy [8]). The
physically meaningful and invariant norm of generalized vectors
can be interpreted employing the mass matrix as metric for the
tangent space of the configuration manifold. This leads to so-
called mass-orthogonal formulations. The generalized inverse of
the constraint Jacobian for this case can be derived as

A† = M−1AT
(
AM−1AT

)−1
. (26)

It is important to note that this expression can be derived based
on pure physical considerations without algebraic manipulations.
This definition of the generalized inverse can be further elab-
orated by decomposingM−1 asM−1 = M− 1

2 M− 1
2 . Then,

equation (26) can be understood as the Moore-Penrose pseudo-
inverse ofAM− 1

2 , where the pseudo-inverse can be formed us-
ing singular value decomposition. The advantage of this trans-
formation is that the generalized inverse can now be calculated
for systems where the constraint Jacobian does not have a full
row rank (e.g. over-constrained systems, singular systems). To
illustrate the above decomposition, we can consider again the
loop-closure of the three-link example (Figure 1). We present
numerical values only, since the analytical expressions are too
lengthy to include here. We assume that the joint angles are15o,
20o, 25o, the links are beams with uniform mass distribution,
and the mass and length of the links are5 kg, 7 kg, 12 kg, 1 m,
2 m, 3 m. For this case and configuration, the constraints for the
kinematic variations, equation (12), can be expressed as

[ −4.0040 −3.7452 −2.5981
4.1042 3.1383 1.5000

] 
 δq̂1

δq̂2

δq̂3


 =


 0

0
0


 (27)

and, using equations (24) - (26), the decomposition can be per-
formed as

δq̂c =


 3.2248 2.1852 0.7127

−4.0861 −3.0134 −1.3090
2.4614 2.4176 1.7885





 δq̂1

δq̂2

δq̂3


 (28)

and

δq̂a =


 −2.2248 −2.1852 −0.7127

4.0861 4.0134 1.3090
−2.4614 −2.4176 −0.7885





 δq̂1

δq̂2

δq̂3


 (29)

As we can see, the elements ofδq̂a can be non-zero, and for any
arbitrary selection of the elements ofδq̂, they are not influencing
the satisfaction of the constraints.

Array δq̂a gives the admissible set of kinematic variations
without the introduction of new, independent variations. Thus,
based on the basic principle of constrained motion, equation (13),

δq̂T
a Qconstraint = 0. (30)

Based on these considerations, by substituting the decomposition
(24) into (11) we obtain the constraint force free equations as

PT (Qinertial − Qimpressed) = 0, (31)

whereP = (I − A†A) can be considered as a projector oper-
ator. This equation can be seen as the counterpart of equation
(17), but here the formulation is expressed in terms ofn equa-
tions, using the descriptor set of variables. In the expression of
theQinertial, a decomposition similar to the above can also be
done forq̇ andq̈ using equation (6) and its time derivative. We
do not give these detailed expressions here. But, the major phys-
ical idea and contribution is expressed by equation (31), which
is clearly a consequence of the differential variational principles,
as fundamental ideas of constrained systems. As we know, this is
the first time that this general derivation based on the basic prin-
ciples of constrained systems is presented. However, there are
several works available in the literature where methods of this
class of approaches are discussed. One of the first descriptions
of this approach can be found in Brauchli [5], that was subse-
quently applied to model the dynamics of a parallel robot, the
Delta robot, by Devaquet and Brauchli [7], with special atten-
tion to closed form inverse dynamics equations. This analytical
technique was further considered and elaborated in Udwadia and
Kalaba [19], [20]. Aghili and Piedbœuf [1] developed a method
pertaining to this class of approaches for hardware-in-the-loop
simulation of robotic systems interacting with the environment.
With the exception of Devaquet and Brauchli [7], this approach
has not really been applied to parallel systems yet. It should
receive more attention since it can be used in both inverse and
forward dynamics, and it has the great advantage that it can rel-
atively simply work for singular cases when constraints become
dependent (A does not have a full row rank) (Udwadia and Kal-
aba [19], Arabyan and Wu [3]. Redundant constraints can be es-
pecially important in modeling parallel manipulators (Devaquet

345



and Brauchli [7]). On the other hand, this technique is not very
well suited for generic symbolic implementation since it requires
to form and handle a generalized inverse, that usually cannot be
carried out in symbolic form for an arbitrarily large system.

4 Some Interesting Areas in the Dynamics of Parallel Sys-
tems

Dynamics formulations usually have two main areas of applica-
tions: they are used in control, and in design analysis and oper-
ations. The methods summarized above can be advantageous in
various problems of parallel systems dynamics. A few examples
will be summarized here.

We already mentioned forward and inverse dynamics, and
suitability for symbolic or numerical model developments. For-
ward dynamics is the essence of computer simulations. In the
formulation of a model for simulations, it is of key importance
how the loop closure constraints are handled. The methods pre-
sented in this paper should be further explored from the point of
view of parallel structures, in order to develop the algorithms for
efficient and tractable computer modeling. Efficient inverse dy-
namics solutions are required for advanced model based control
of parallel systems. Inverse dynamics is, in a way, simpler be-
cause it does not require the solution for the accelerations. We
would like to emphasize the potentials in symbolic model devel-
opment. This offers more effective ways for controller develop-
ment and also for further dynamic analysis. Symbolic methods
can offer great advantages in the development of advanced nu-
merical methods for the solution of the forward dynamics prob-
lem as well as in dynamic parameter identification.

Dynamic parameter identification is another area of great
importance. In model based control, the knowledge of the accu-
rate dynamic model is required. In simulations and detailed dy-
namic analysis of structures (e.g., analysis of constraint forces),
good representation of the existing physical system is also nec-
essary. The parameter identification of parallel systems is much
more involved than that of serial arms (because of the presence
of loop closure constraints). A detailed understanding of the con-
strained system dynamics and methods are necessary to advance
the techniques for model identification of parallel structures.

In control, the user is often concerned only about the equa-
tions of motion of the system, where constraint forces are elim-
inated from the formulation. However, in design and operations
of systems the constraint forces are of key importance. An ex-
ample can be the Canadian space robotic system of the Interna-
tional Space Station, where the accurate knowledge of constraint
forces in the system is of primary importance in assessing the
feasibility and design of space operations. Constraint forces can
even be important of advanced control of systems, for example,
where friction effects are accounted for (in constrained systems,
friction effects are usually dependent on constraint forces). The
study of constraint forces and their optimum ”design” and distri-
bution during dynamic loading should receive more attention in
parallel systems.

Today, dynamic analysis is primarily based on simulations,
i.e., the numerical solution of the system of dynamic equations.
It would also be desirable to put more emphasis on qualitative
methods that are not primarily based on simulation (numerical
solution of differential equations with known initial values). But,
instead they would rely on the study of the structure of the dy-
namic equations and the underlying physical phenomena, and the
development of performance measures. This kind of approach
can be particularly useful for example in case of interacting sys-
tems (e.g. docking mechanisms) where the numerical modeling
and simulation of the contact dynamics effects are usually quite
difficult. Also, it is of high importance to determine for example
that how parallel systems can be optimally used (and designed
for) to reduce contact dynamics effects in interacting systems.
Redundant mechanisms can play a dominant role in these con-
siderations.
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Abstract: An approach is presented for automatically generat-
ing inverse dynamic solutions for planar and spatial parallel ma-
nipulators, thereby eliminating the errors and tedium associated
with hand derivations. Kinematic and dynamic equations are
formulated using a combination of linear graph theory, the prin-
ciple of virtual work, and symbolic programming. The formu-
lation is first developed for spatial manipulators with 6 degrees
of freedom (DOF) and planar manipulators with 3 DOF. Two ex-
amples, including a Gough-Stewart platform, are used to demon-
strate the automated formulation and to compare the efficiencies
of several different computer implementations. The method is ex-
tended to manipulators with less than 6 DOF, and demonstrated
using a spatial 4-DOF manipulator as an example.

1 Introduction

Merlet (2000) has defined a parallel manipulator as “a closed-
loop kinematic chain mechanism whose end effector is linked to
the base by several independent kinematic chains”. In compari-
son with serial robots, parallel manipulators have very good per-
formance in terms of rigidity, accuracy and dynamic character-
istics. However, the closed chains in parallel manipulators lead
to difficulties in obtaining the dynamic models needed for simu-
lation, control, and design. Manual derivations may lead to very
efficient solutions for the inverse dynamics, but they are very te-
dious and prone to errors for complex parallel manipulators. To
quote Merlet, “one school of thought recommends that dynamic
models should not be used because modelling errors are too nu-
merous”.

One of the most popular parallel manipulators is the Gough-
Stewart platform, which has been the subject of three recent pa-
pers on manual derivations for the inverse dynamics. Dasgupta
and Mruthynjaya (1998) use a Newton-Euler formulation to ar-
rive at a system of six linear equations that are solved numeri-
cally for the six unknown driving forces. Tsai (2000) arrives at a
similar system of equations, but uses the principle of virtual work

to derive them. Wang and Gosselin (1998) also use the principle
of virtual work, but their final equations are explicit in the driving
loads so that the solution of linear systems is not required.

In multibody system dynamics (Schiehlen (1990)), a main
goal is to develop formulations that automatically generate kine-
matic and dynamic equations. The approach taken by most com-
mercial multibody computer programs, e.g. ADAMS, DADS,
and Working Model, is to use absolute coordinates to represent
the position and orientation of every body in the system (Haug
(1989)). The result is very large systems of equations that are
represented by abstract data structures; closed-form solutions for
the inverse dynamics are not possible. The other common ap-
proach in multibody dynamics is to use the joint coordinates
favoured by roboticists, in which the relative position and ori-
entation of two adjacent bodies are represented by variables as-
sociated with the kinematic joint connecting the two bodies.

Shi and McPhee (2000) have used joint coordinates in a
multibody formulation that combines graph-theoretic methods
for kinematics with the principle of virtual work for dynamics.
The formulation is implemented using computer algebra (Shi and
McPhee (2002)), so that the equations of motion are automati-
cally generated in symbolic form for systems with any number of
open and closed chains of rigid or flexible bodies. Non-working
reaction loads can be eliminated from the dynamic equations us-
ing coordinate partitioning and the principle of virtual work. The
result is one dynamic equation per degree of freedom (DOF), in
which the actuator loads appear explicitly. Assuming that there
is one actuator per DOF, symbolic expressions for these actua-
tor loads can be directly obtained. This represents an automated
solution for the inverse dynamics of general multibody systems.

However, a problem arises when there are many closed kine-
matic chains, resulting in a large number of loop closure equa-
tions that are linear in joint velocities. The coordinate parti-
tioning method requires the solution of these equations, but di-
rect application of computer algebra to this large linear system
will fail, or result in very large, unwieldy expressions. One can
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take a combined symbolic/numeric approach, in which the linear
equations from coordinate partitioning are solved numerically
and substituted into symbolic expressions for the actuator forces.
This approach was successfully applied to the Gough-Stewart
platform (McPhee, Shi, and Piedboeuf (2002)). However, the
efficiency of this approach is questionable, and the implementa-
tion of a linear equation solver may not be feasible in a real-time
control application.

The purpose of this paper is to present a systematic method
for generating inverse dynamic solutions for parallel manipula-
tors, thereby eliminating the errors and tedium associated with
hand derivations. By exploiting the decoupling of kinematic
equations between independent chains of a parallel manipulator,
symbolic solutions for the linear systems of loop closure equa-
tions are obtained. These solutions, for dependent virtual dis-
placements in terms of independent virtual displacements, are
then used to automatically generate closed-form expressions for
the inverse dynamics.

For convenience, we refer to planar 3-DOF and spatial 6-
DOF manipulators as having “full mobility”, i.e. the end effector
can be independently positioned and oriented within the limits of
the workspace. A spatial (or planar) manipulator with less than
6 (or 3) DOF is defined as having “reduced mobility” because
the end effector’s position and orientation can not be controlled
independently. The authors are very open to suggestions for a
more appropriate terminology.

First, we present a formulation for planar and spatial ma-
nipulators with full mobility, in which there is one actuator per
DOF. We have made no other assumptions regarding the number
of legs or placement of actuators. Two examples, a planar RRR
manipulator and the Gough-Stewart platform, are presented to
demonstrate the features of this new formulation, and to draw
conclusions regarding the efficiency of several different com-
puter implementations. The method is then extended to parallel
manipulators with reduced mobility, and demonstrated using a
spatial 4-DOF manipulator as an example.

2 Multibody Dynamic Formulation

By representing the system topology by a linear graph and select-
ing a spanning tree, the n generalized coordinates q that appear
in the kinematic and dynamic equations are defined (McPhee
(1998)). One can use absolute or joint coordinates, or some
combination thereof, but we will restrict ourselves to joint co-
ordinates for the present paper. Complete details of the equation
formulation process are given in Shi and McPhee (2000); a brief
overview is presented here.

Each node in the linear graph represents a body-fixed refer-
ence frame, while each edge corresponds to a physical compo-
nent such as a rigid or flexible body, kinematic joint, force, or
torque. For each joint in the cotree (the complement of the tree),
the graph-theoretic “circuit equations” are equivalent to the rota-
tional and translational equations corresponding to loop closure.
Combining these m nonlinear algebraic equations in a column

matrix, one obtains:
�(q; t) = 0 (1)

where m = n� f , and f is the DOF of the multibody system.
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Figure 1: Planar Parallel 3-DOF Manipulator

To demonstrate, consider the 3-DOF planar parallel RRR
manipulator from Ma and Angeles (1989), shown in Figure 1.
The end effector (labelled 7) is an equilateral triangle with sides
of length L7, links 1, 2, and 3 have a length L1, links 4, 5, and
6 have a length of L4, and the three ground-fixed revolute joints
form an equilateral triangle with sides of length L0.
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Figure 2: Linear Graph of Leg 1 of 3-DOF Manipulator

A linear graph representation of the first leg of the 3-DOF
manipulator is shown in Figure 2. For clarity, the bodies are su-
perimposed on the graph with dotted lines. The revolute joints
are represented by edges h1, h4, and h9, while a “virtual” planar
joint p7 represents the 3-DOF motion of the end effector rela-
tive to the ground. This virtual joint, sometimes called a free
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joint, is included in the graph so that the position and orienta-
tion of the end effector frame (x7y7 in Figure 2) can appear in
the kinematic equations. The remaining edges r11, r12, r41, r42,
and r71 represent body-fixed kinematic transformations between
a reference frame (node) at the mass center and reference frames
at the connection points between bodies. For simplicity, the dy-
namic elements corresponding to inertial and applied forces are
not shown in the linear graph.

By selecting h1, h4, and p7 into the spanning tree for this
linear graph, the kinematic equations are automatically generated
in terms of the corresponding “branch” coordinates �1, �4, x7,
y7, and �7 (McPhee (1998)). Note that the tree is completed by
the inclusion of the kinematic transformation elements r11, r12,
r41, r42, and r71. Joint h9 must therefore be in the cotree; as
a consequence, the corresponding joint coordinate is eliminated
from all equations.

From the incidence matrix for this linear graph, one can sys-
tematically generate the circuit equation for cotree joint h9:

r1 � r11 + r12 + r4 � r41 + r42 + r9 � r71 � r7 = 0 (2)

which clearly represents loop closure of translational displace-
ment vectors. Into this circuit equation, the constitutive equa-
tions for individual components are substituted. For revolute
joints, which do not admit any translations:

r1 = r4 = r9 = 0 (3)

while the translational displacement vectors for the kinematic
transformation elements and the planar joint are:

r12 � r11 = L1c1{̂ + L1s1|̂ (4)

r42 � r41 = L4c14{̂+ L4s14|̂ (5)

r71 = �L7

2
(c7 {̂+ s7|̂)�

p
3

6
L7(�s7 {̂ + c7|̂) (6)

r7 = x7{̂ + y7|̂ (7)

where ci � cos �i and sij � sin(�i + �j), etc, and {̂ and |̂ are
unit vectors parallel to the global X and Y axes, respectively.
Note that �1 and �4 are measured as shown in Figure 1, and �7
is measured counter-clockwise from the global X axis to the x7
axis. Substituting these constitutive equations (3-7) into the cir-
cuit equation (2), and projecting the result onto the reaction space
(̂{, |̂) for cotree joint h9 (Shi and McPhee (2000)), one obtains 2
nonlinear algebraic equations in terms of the selected branch co-
ordinates �1, �4, x7, y7, and �7.

Repeating this process for all three legs of the manipulator,
one obtains the m = 6 kinematic constraint equations� = 0:8>>>>>>>><
>>>>>>>>:

�x7 + 1

2
L7 c7 �

p
3

6
L7 s7 + L1c1 + L4c14

�y7 + 1

2
L7s7 +

p
3

6
L7c7 + L1s1 + L4s14

L0 � x7 � 1

2
L7 c7 �

p
3

6
L7 s7 + L1c2 + L4c25

�y7 � 1

2
L7s7 +

p
3

6
L7c7 + L1s2 + L4s25

�x7 +
p
3

3
L7 s7 + L1c3 + L4c36 +

1

2
L0

�y7 �
p
3

3
L7c7 + L1s3 + L4s36 +

p
3

2
L0

9>>>>>>>>=
>>>>>>>>;

= 0

(8)

noting that �2, �3, �5, and �6 appear in the last four equa-
tions because the corresponding joint elements were selected
into the spanning tree for the linear graph of the entire sys-
tem. Given any 3 of the full set of branch coordinates q =
[�1; �2; �3; �4; �5; �6; x7; y7; �7]T , one can solve equations (8) for
the remaining 6 coordinates, thereby effecting a kinematic anal-
ysis.

In anticipation of applying the principle of virtual work, q is
partitioned into f independent coordinates qi and m dependent
coordinates qd. Taking the variation of equation (1), one obtains:

�qi�qi +�qd�qd = 0 (9)

where �qi = @�=@qi and �qd = @�=@qd is non-singular
as long as the given physical constraints are not redundant. To
eliminate all non-workingreaction loads from the dynamic equa-
tions using the principle of virtual work, one needs to solve these
linear equations (9) for the transformation from dependent to in-
dependent variations:

�qd = ���1qd�qi�qi = J �qi (10)

where the m � f matrix J is a nonlinear function of the joint
coordinates.

To formulate the dynamic equations, the contributions of all
working components to the system virtual work are summed. If
there are nT applied torques T, nF applied forces F (including
weights), and nR rigid bodies, one has:

�W =
X
nT

TT �� +
X
nF

FT �r

�
X
nR

h
maT �r+ (I _! + ! � I!)

T
��
i
= 0 (11)

where �r and �� are virtual translational and rotational displace-
ments, respectively, m and I are the mass and inertia tensor of
a rigid body, ! is its angular velocity, and a is the translational
acceleration of its mass center. One of the attractive features of
a virtual work approach is that flexible bodies can be included
in the system model more easily than with a Newton-Euler ap-
proach (Shi and McPhee (2000)).

One can then use the graph-theoretic “branch transforma-
tion” equations to express all kinematic variables (e.g. !, �r) in
terms of the coordinates q associated with joints in the tree. The
easy and systematic generation of these transformations is one of
the advantages of using linear graph theory for kinematic mod-
elling. After applying these transformations, one has:

�W = QT �q = 0 (12)

where Q are the n generalized forces corresponding to �q. By
treating these n variations as independent, one obtainsn dynamic
equations in which the m reaction forces and torques in cotree
joints appear explicitly or as unknown Lagrange multipliers.
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Assuming that we are not interested in these reaction loads,
we can substitute equation (10) into the system virtual work ex-
pression (12) to get:

�W = QT

�
1

J

�
�qi = QT

i �qi = 0 (13)

where Qi are the generalized forces associated with �qi. Since
these variations are independent, each generalized force can be
set to zero to obtain one dynamic equation per degree of freedom.
In matrix form, fM�q = eF (q; _q; t) (14)

where fM is an unsymmetric f � n mass matrix. In a forward
dynamic problem, (1) and (14) give m+ f equations that can be
solved for the n coordinates q. In an inverse dynamic problem
for which q(t) is known, equation (14) can be solved for the f
actuator loads. Note that the actuator loads will always appear
linearly in eF, which also contains external loads and quadratic
velocity terms (Coriolis, centripetal). Furthermore, by choosing
the actuated joint variables as the independent coordinates qi,
the actuator loads will be decoupled in equation (14), i.e. exactly
one actuator load appears explicitly in each equation. Hence, no
matrix inversion is needed.

The systematic nature of this kinematic and dynamic formu-
lation made it relatively easy to implement using the symbolic
programming language Maple. Kinematic and dynamic equa-
tions are generated automatically in symbolic form by our pro-
gram DynaFlex, given only a description of the system as input.
Dynamic equations can be generated with or without Lagrange
multipliers, as desired. However, the elimination of Lagrange
multipliers requires equation (10), which in turn requires the so-
lution of the linear equations (9).

3 Inverse Dynamics of Full-Mobility Parallel Manipulators

3.1 Pseudo-variable Approach

The direct application of symbolic programming to the solution
of the linear equations (9) for the dependent variations will be
called the direct symbolical approach. As discussed previously,
this approach will fail when the number of loop closure equations
is large, in which case the embedding formulation cannot be ap-
plied. In this section, we present a pseudo-variable approach to
solving equation (9) in a way that exploits the special topology
of parallel manipulators.

The set of coordinates are further partitioned as:

q = (qi;qdd;qe) (15)

where qi are the independent variables (associated with the actu-
ators), qe are the end effector variables, and qdd are the variables
associated with the unactuated joints. The so-called pseudo-
independent variables qpi and pseudo-dependent variables qpd
are now introduced as follows:

qpi = qe (16)

qpd = (qi;qdd) (17)

where the number of pseudo-independent and end effector vari-
ables are both equal to f for manipulators with full mobility. This
re-partitioning of the joint coordinates leads to a largely decou-
pled linear system of equations (9); this is the essential feature of
the pseudo-variable approach.

To demonstrate, consider selecting the actuated joint angles
�1, �2, and �3 as independent coordinates qi for the planar 3-
DOF manipulator. The partial derivatives (Jacobian matrices) of
the loop closure equations (2) with respect to the dependent and
pseudo-dependent variables have the structures:

�qd =

2
6666664

� � �
� � �

� � �
� � �

� � �
� � �

3
7777775

(18)

�qpd =

2
6666664

� �
� �

� �
� �

� �
� �

3
7777775

(19)

where an asterisk � indicates a non-zero entry. One can clearly
see the decoupling that is present in the Jacobian matrix�qpd for
the pseudo-dependent variables. However, we don’t want to use
the end-effector variables as our independent variables, since we
would end up with coupled dynamic equations to solve for the
actuator loads. The approach presented in this section combines
the advantages of selecting end effector variables as independent
(Tsai (2000)) with the advantages of selecting the actuated joint
coordinates as independent (Wang and Gosselin (1998)).

The transformation (4) from dependent to independent vari-
ations is obtained in a systematic manner by the following three
steps:

1. First, the system of m linear equations

�qpd�qpd +�qpi�qpi = 0 (20)

is solved for �qpd

�qpd =

�
�qi
�qdd

�
=

�
Ji
Jdd

�
�qpi (21)

where Ji is the “inverse Jacobian matrix” (Merlet (2000)).

2. In the second step, the first f equations of (21), which relate
independent and pseudo-independent variables, are solved
for the pseudo-independent variables:

�qpi = J�1i �qi (22)

The solution is obtained using a linear solver instead of in-
verting the matrix. It is evident from equation (22) that inde-
pendent and pseudo-independent variables have to be equal
in number (f).
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3. In the third step, the relation obtained in the second step
can be used to substitute in the remaining equations of (21)
which leads to

�qdd = JddJ
�1
i �qi (23)

and hence

�qd =

�
JddJ

�1
i

J�1i

�
�qi (24)

This new procedure is advantageous, because (20) can be
solved much easier than (9) due to a largely decoupled Jacobian
matrix �qpd . As an example, the Gough-Stewart platform re-
quires solving a linear system with an 18�18 coefficient matrix.
This is impossible using the direct approach as long as the ac-
tuator variables are treated as independent. It becomes feasible
using the suggested 3-step procedure, since the 18�18-system is
now largely decoupled. Tests with Maple showed that solving
this system needs only seconds and little memory. The 6�6-
system in the second step can be solved symbolically, but re-
quires significantly more time and memory than solving the de-
coupled 18�18-system. In other words, the second step is now
the bottleneck; however, the maximum number of linear equa-
tions to be solved is now only 6 (or 3, for planar manipulators).

3.2 Implicit Symbolical Approach

The Gough-Stewart platform requires, in the second step, a sym-
bolic solution of a 6�6-system. This is feasible, but leads to
very complex expressions for �qpi. Substituting these expres-
sions into (23) and into the virtual work equation leads to even
more complex expressions. So it might be desirable to use a sym-
bolic dummy matrix for J in (10) and obtain expressions for the
actuator loads in terms of the entries of J. The matrix J itself
can then be calculated as:

J =

�
JddJ

�1
i

J�1i

�
(25)

The matrices J�1i and Jdd are saved by our symbolic pro-
gram DynaFlex. Since later numerical inversion is not needed,
this implicit symbolical approach gives a symbolic solution.

3.3 Combined Symbolic/Numeric Approaches

Instead of solving symbolically for the entries of J, one might
want to use numerical methods for linear systems. Two different
approaches were added to the DynaFlex code. The first approach
uses a dummy matrix for J, leading to a solution for the driving
loads in terms of the entries of J. The m � f-matrix J can be
calculated by solving f linear systems

�qd jk = �'k ; k = 1 : : : f (26)

where jk and 'k are the k-th column of the matrices J and �qi

respectively. This is greatly facilitated by a LU-decomposition of
�qd prior to solving (26). Since LU-decomposition (done once)

and forward/backward substitution (done f times) are of com-
putational complexity m2 and m respectively, this method will
be more efficient than calculating J by the symbolic inversion
shown in equation (10), which has a computational complexity
of m3.

The second symbolic/numeric approach, implemented only
for comparison, uses a dummy for ��1qd , i.e. the dummy ma-
trix used is then a m � m-matrix. Calculating the driving loads
requires numerical inversion of �qd for every time step. This
second approach was used by McPhee et al. to solve for the in-
verse dynamics of the Gough-Stewart platform (McPhee, Shi,
and Piedboeuf (2002)).

Since the matrix �qd is sparse, sparsity methods might be
considered by the user.

3.4 End Effector Approach

In the previous approaches, the coordinates associated with the
actuators were chosen to be independent. The approaches differ
in the manner that they solve equation (3) to get the dependent
variations �qd as functions of the independent variations �qi. By
selecting the actuator coordinates to be independent, the resulting
dynamic equations are linear and decoupled in the actuator loads.
Thus, explicit symbolic expressions for the actuator loads are
generated.

For comparison purposes, we have also used an end effector
approach in which the end effector variables are chosen to be
independent. It was already shown that this choice leads to a
largely decoupled system of linear equations (3) that are readily
solved by Maple. However, the resulting dynamic equations are
then coupled in the actuator loads � :

C (q) � = c (q; _q; �q; t) (27)

where the f � f-matrix C is a function of displacements only.
The right-hand side vector c contains all acceleration terms as
well as quadratic velocity terms and external forces. Equation
(27) can be solved symbolically as long as f � 6. Alternatively,
the driving loads can be calculated by solving (27) numerically.

3.5 Formulation Time

Of all the symbolic approaches, the implicit symbolical approach
is the fastest at generating the equations of motion because sub-
stitutions are avoided. On the other hand, this approach will lead
to a less efficient numerical implementation when the symbolic
expressions are converted to numeric form because optimization
of the code conversion (e.g. C(˜,optimized) in Maple) can
work only on parts of the code at a time; this results in repeated
evaluation of particular expressions. This could be partly over-
come by revising the code afterwards and extracting common
expressions.

The symbolic/numeric approaches will be even faster at gen-
erating equations, since solving (9) is done numerically during
the actual simulation and not during the equation formulation.
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Results of numerical simulations will be discussed in detail in
the next section.

4 Full-Mobility Manipulator Examples

In this section, two examples of parallel manipulators with full
mobility are considered. The main purpose is to show that the
suggested approaches can automatically generate symbolic so-
lutions for inverse dynamics. Furthermore, some statements are
made about the relative computational efficiency of the different
approaches.

The general procedure is always the same. Based on a de-
scription of the system, DynaFlex derives the dynamic equa-
tions. The symbolic expressions are transformed into Matlab-
code, which is used in the numerical implementation. For the
combined symbolic/numeric approaches, the linear system from
the coordinate partitioning is solved using LU-decomposition.

4.1 Planar RRR 3-DOF Manipulator

For the planar RRR manipulator shown in Figure 1, the drivers
given in Ma and Angeles (1989) were used:

�1 =
1

3
� +

1

6

�
2�t

T
� sin

2�t

T

�

�2 =
4

3
� � 1

6

�
2�t

T
� sin

2�t

T

�
(28)

�3 =
11

6
� +

1

12

�
2�t

T
� sin

2�t

T

�

where T = 3 s. Note that these driver functions give zero veloc-
ity and acceleration at the start and end of the motion.

Prescribing the driver motion does not uniquely define the
motion of the end effector (there are multiple solutions for the
forward kinematics) as long as the initial configuration is not
given. To calculate the actuator torques �1, �2, and �3 corre-
sponding to the drivers �1, �2, and �3, we have used the initial
configuration:

�1 = 1

3
� �4 = �0:865 x7 = 0:728

�2 = 4

3
� �5 = �2:102 y7 = 0:233

�3 = 11

6
� �6 = �0:976 �7 = 3:916

Link i Li [m] mi [kg] Ii [kg m2]

1, 2, 3 0.4 3.0 0.04
4, 5, 6 0.6 4.0 0.12

7 0.4 8.0 0.0817

Table 1: Dimensions and inertia properties

The parameters used for the various links are shown in Table
1. In addition, L0 = 1:0 m and gravity acts in the �Y direction.

The resulting torques, shown in Figure 3, are identical to those
derived by hand in Ma and Angeles (1989). Explicit expressions
for the actuator torques are too lengthy to be displayed here1.
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Figure 3: Driving torques for planar 3-DOF manipulator

Approach Flops CPU [ms]

direct symbolic 967 6.0
pseudo-variable 871 6.1
implicit symbolic 879 7.6
symbolic/numeric (dummy J) 923 15.4
symbolic/numeric (dummy ��1qd ) 1235 19.8

Table 2: Computational efficiency: number of flops and CPU
time for one inverse dynamic analysis (Pentium II, 333 MHz)

The computational efficiency was measured by means of the
CPU time and the number of flops required for one inverse dy-
namic evaluation of the three driving torques; the results are sum-
marized in Table 2. The kinematic solution, performed prior to
the dynamic analysis, is not counted. It can be seen that the
direct symbolic and pseudo-variable approaches are equivalent
regarding the CPU time, while the implicit symbolic approach
requires about 25% more CPU time than the first two symbolic
approaches. The combined symbolic/numeric approach with a
dummy for J needs more than twice the CPU time compared to
the symbolic approaches. The discrepancy between the number
of flops and the CPU-time might be explained by the way flops
are counted, i.e. each operation is counted as one flop regardless
of the time required to perform the operation.

1Available upon request from the authors, for both the 3-DOF RRR manipu-
lator and the Gough-Stewart platform.
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Figure 4: Gough-Stewart Platform

We can draw the conclusion that, for problems of this com-
plexity, the symbolic approaches are preferred because they are
faster than the numerical approaches. Furthermore, they do not
need matrix manipulation capabilities — this is advantageous in
microprocessor-based control applications.

4.2 Gough-Stewart 6-DOF Platform

The Gough-Stewart platform, shown in Figure 4, is a complex
spatial parallel manipulator. An inverse dynamic analysis was
carried out for the geometry given in Tsai (2000). The kinematic
constraint equations associated with leg k are of the general form

�k =

2
4 �k cos�k sin �k � ak (t)

�k sin�k sin�k � bk (t)
�k cos �k � ck (t)

3
5 = 0 ; k = 1 : : :6

(29)
where �k is the actuated length of leg k, �k and �k are the an-
gles of the universal joint between leg k and the ground, and
ak (t), bk (t), ck (t) are known functions of the platform motion
(McPhee, Shi, and Piedboeuf (2002)). With 3 joint coordinates
per leg, and 6 end effector coordinates, there is a total of n = 24
variables. The trajectory from Tsai (2000) is used, in which the
platform moves with constant orientation and a sinusoidal trans-
lation in each of the three Cartesian directions. With these 6 vari-
ables prescribed, one can solve the m = 18 kinematic constraint
equations (29) for the joint coordinates associated with each leg.

As discussed previously, the direct symbolic approach is not
feasible for this relatively large number of loop closure equa-
tions. The pseudo-variable approach without a dummy matrix
is also not feasible on the computer used2, because the expres-
sions for J are too complex to substitute into the virtual work

2Pentium-II, 333 Mhz, 64 Mb Ram.

equation. However, the implicit symbolic approach provides a
symbolic solution that does not require any algorithms for solv-
ing linear systems in the numerical implementation. To verify
the implicit symbolic solution and to get information about the
computational efficiency, the two combined symbolic/numeric
approaches were also applied to the Gough-Stewart platform.
Additionally, the approach that treats the end effector variables
as independent and solves the final dynamic equations for the
actuator loads was implemented, with equation (27) solved both
symbolically and numerically.
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Figure 5: Driving forces for Gough-Stewart platform

In all five approaches, the calculated driving torques shown
in Figure 5 are identical to those derived by hand in Tsai (2000).

As summarized in Table 3, the symbolic DynaFlex solutions
(approaches 1 and 5) require between 60% and 75% more CPU
time than the fastest numerical approach (approach 4). Note that
approaches 4 and 5 correspond respectively to numeric and sym-
bolic solutions of equation (27) in the end effector approach.

Approach Without With
Sparsity Sparsity

1 – implicit symbolic 260 260
2 – symbolic/numeric (dummy J) 195 82
3 – symbolic/numeric (dummy ��1qd ) 305 90
4 – end effector, numeric 150 150
5 – end effector, symbolic 240 240

Table 3: Computational efficiency: CPU time [ms] for one in-
verse dynamic analysis (Pentium II, 333 MHz)

However, the symbolic approaches have the advantage of
giving an explicit solution. Thus, no matrix manipulation ca-
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pabilities (e.g. LU-decomposition) are required in the numeric
implementation, which might be important when the inverse dy-
namic analysis has to be stored on a microprocessor. On the
other hand, one has to take into account that the explicit ex-
pressions will be larger than the equations that are solved nu-
merically. Hence, the memory savings by not implementing the
matrix manipulation capabilities will be partly offset by larger
program code for the explicit expressions.

The previous comments are based on calculations without
sparsity methods. To investigate the influence of sparse matrix
solution methods on the required CPU-time, the numerical calcu-
lation of J and��1qd was performed using Matlab’s sparsity capa-
bilities. The symbolic approaches and the numerical approach 4
cannot benefit from using sparsity methods. The faster of the two
numeric/symbolic approaches described in Section 3.3 is about
three times faster than the symbolic approaches when sparsity
methods are employed.

5 Parallel Manipulators with Reduced Mobility

5.1 Modified Formulation

In the pseudo-variable approach presented in Section 3.1, it was
assumed that the end effector variables are equal in number to
the system DOF. Thus, this approach can only generate equations
for parallel manipulators with full mobility, i.e. 6 DOF for spatial
manipulators and 3 DOF for planar manipulators.

X

Y

1

2

3

4

5

6

Figure 6: Planar 2-DOF manipulator

However, there are many practical applications involving
parallel manipulators with reduced mobility, such as the planar
manipulator shown in Figure 6. The end effector (body 6) has
only two DOF, and so only two actuators are needed (e.g. in par-
allel with the two prismatic joints). Clearly, the three end effec-
tor coordinates (x6; y6; �6) cannot be treated as independent, as
required by the first step of the pseudo-variable approach from
Section 3.1. Thus, this approach cannot be used to generate an
inverse dynamic solution for this relatively simple manipulator.

In this section, a modified pseudo-variable approach is pre-

sented, which will allow treatment of spatial manipulators with
less than 6 DOF (and planar manipulators with less than 3 DOF)
using the same basic steps as before, i.e.

1. select DOF of the end effector virtual displacements as
pseudo-independent variables; for the topologies that are
typical of parallel manipulators, this leads to a significant
decoupling of the kinematic equations (20) that can be ex-
ploited during the solutionof this (possibly large) linear sys-
tem of equations.

2. solve for the pseudo-independent end effector variables as
functions of the independent variables.

3. use the results from step 2 to obtain the desired relation
�qd = J�qi.

The method is explained using the 2-DOF planar parallel
manipulator from Figure 6 as an example. The following n = 8
coordinates were chosen:

q = (�1; �2; �1; �2; �3; x6; y6; �6)
T

where �1; �2; �3 are the angles (measured from the positive X-
axis) associated with the revolute joints that connect links 1, 2,
3 to the ground, and �1; �2 are the actuated lengths of legs 1+4
and 2+5, respectively. The end effector and the ground body
are equilateral triangles with sides of length L6 and L0, respec-
tively. From a linear graph representation of the system, the
m = n � f = 6 kinematic constraint equations are systemat-
ically generated:

� =

8>>>>>>>><
>>>>>>>>:

�x6 � 1

2
L6c6 �

p
3

6
L6s6 + �1c1 + L0

�y6 � 1

2
L6s6 +

p
3

6
L6c6 + �1s1

�x6 + 1

2
L6c6 �

p
3

6
L6s6 + �2c2 +

1

2
L0

�y6 + 1

2
L6s6 +

p
3

6
L6c6 + �2s2 +

p
3

2
L0

�x6 +
p
3

3
L6s6 + L3c3

�y6 �
p
3

3
L6c6 + L3s3

9>>>>>>>>=
>>>>>>>>;

(30)

where again, sj = sin �j and cj = cos �j . The first variation of
these equations has the general form:

�q �q = 0 (31)

where the Jacobian matrix has the following structure:

�q =

2
6666664

� � j � �
� � j � �

� � j � �
� � j � �

� j � �
� j � �

3
7777775

(32)

where � is a non-zero entry. The Jacobian matrix shows that
the end effector variables cannot be treated as independent; the
columns associated with the legs do not give a square matrix that
can be used in (20) to solve for the dependent variables.
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The key idea in this modified approach is to reduce the lin-
ear system of equations (31) by eliminating one or more of the
end effector variables. For example, the first row of equation
(31) can be used to solve for �x6 as a function of other virtual
displacements. This allows the linear system of equations to be
reduced by one (the amount by which the manipulator mobility
is reduced from full mobility), resulting in:

���q ��q = 0 (33)

where ��q = (��1; ��2; ��1; ��2; ��3; �y6; ��6)
T are the re-

maining variables, and the modified Jacobian matrix has the
structure:

���q =

2
66664
� � j � �
� � � � j �

� � j � �
� � � j �

� j � �

3
77775 (34)

This reduced system of equations (33) can now be used as the
starting point for the three-step procedure from Section 3.1.

The choice of which end effector variable to eliminate, and
which equation to use, was found to be of minor importance as
long as a translational virtual displacement (i.e. �x6 or �y6) was
chosen. Looking at the Jacobian matrix (32), one can see that us-
ing the fifth row to eliminate �x6 would lead to slightly simpler
expressions in the (modified) third row compared to using the
first row. Furthermore, the modified Jacobian ���q would have
one less non-zero entry. In either case, though, Maple can read-
ily solve the set of largely-decoupled equations, even for large
problems. If a rotational variable (i.e. ��6) were eliminated, the
remaining equations would have a greater degree of coupling.

Comparing the Jacobian matrices (34) and (32), one can see
that the reduction leads to a stronger coupling of the equations.
However, a careful observation of (34) shows that solving the
5�5 system (consisting of the five leftmost columns) requires
only solving one or two equations at a time. Computational
tests showed that Maple can actually benefit from this structure;
linsolve can solve this 5�5 system 10 times faster than a
general 5�5 system.

The reduced system (33) can now be solved using the previ-
ous three-step procedure with the pseudo-independent variables
��qpi = (�y6; ��6)

T . One additional step is needed to calculate
the eliminated variations (here �x6) from the eliminated equa-
tions. The size of the associated linear system is given by the
number of variables eliminated, usually only one or two.

By reducing the number of end effector variables to the DOF
of the manipulator, the pseudo-variable approach can be applied
to manipulators with reduced mobility. It should be mentioned
that reducing the number of end effector variables to less than the
DOF of the manipulator is not advantageous, since treating leg
variables as pseudo-independent (combined with stronger cou-
pling) will lead to systems that are more difficult to solve. Fur-
thermore, it must be emphasized again that the introduced re-
duction of the linear system is only one more intermediate step

in solving equation (9). All coordinates will appear in the final
equations, i.e. eliminating �x6 temporarily in the 2-DOF manip-
ulator under study still gives dynamic equations that contain x6

and its time derivatives. Therefore the user is not restricted in the
choice of variables used to prescribe the motion. This falls under
the domain of the kinematic analysis that precedes the inverse
dynamic solution.

5.2 Spatial 4-DOF Manipulator Example

To demonstrate the capability of the modified approach, an in-
verse dynamic solution is generated for the spatial 4-DOF par-
allel manipulator shown in Figure 7, taken from Wang (1997).

Figure 7: Spatial 4-DOF manipulator

The manipulator is composed of ten moving bodies and five
legs. Four of these legs, numbered 1 to 4, consist of two links
connected to each other by a universal joint. Leg number 5 con-
sists of a single link. All five legs are connected to the ground by
revolute joints, and to the moving platform by spherical joints.
Legs 1 to 4 have the same geometric and inertia properties. The
platform is considered to be the end effector, which undergoes a
4-DOF motion. The four revolute joints associated with legs 1 to
4 are assumed to be actuated, while leg 5 is unactuated. Gravita-
tional forces act in the negative Z-direction.

Since the manipulator has only 4 DOF, the modified pseudo-
variable approach was used to obtain an inverse dynamic solution
for the actuator torques. The direct symbolic implementation is
not feasible on the computer used, because the expressions for J
are too complex to substitute in the virtual work equation. How-
ever, the implicit symbolic approach provides a symbolic solu-
tion that does not require any matrix operations in the numeric
implementation. A dummy matrix J is used in the virtual work
equation, and the symbolic expression for J is directly saved as
Matlab code.
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The manipulator is described using n = 19 coordinates: 6
absolute coordinates for the end effector position and orientation,
and 13 joint coordinates for the revolute and universal joints. The
m = n � f = 15 constraint equations are obtained from loop
closure conditions (circuit equations) for the five spherical joints.

After reducing the system (31) by two of the end effec-
tor variables, the Jacobian matrix with respect to the pseudo-
dependent variables (leg variables) is a 13 � 13-matrix that can
be decomposed into five linear systems. These linear systems are
not completely decoupled, but they can be solved one after the
other, always using the results from the previous steps. Each sys-
tem has a maximum number of three equations. Maple can easily
solve this 13�13-system symbolically, because it recognizes and
exploits the equation structure.

For large expressions in the coefficient matrix or the right-
hand side vector, as they appear in this example, Maple runs out
of memory even though the systems that have to be solved are
only 3 � 3-systems. To overcome this computer implementa-
tion problem, a Maple procedure solvelinearsystemwas
written. In this procedure, a general linear system of the same
size as the one to be solved is generated and all entries that are
zero in the original system are set to zero in the general system.
Non-zero entries are replaced by a single variable. In this way,
complex expressions are avoided while the structure of the sys-
tem is still recognized and exploited. The new system is now
solved using linsolve. Finally, the non-zero entries from the
coefficient matrix as well as the entries from the right-hand side
vector are substituted into the general solution.
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Figure 8: Driving torques for the 4-DOF manipulator

Figure 8 shows the actuator torques. In order to verify the
implicit symbolic solution and to get information about the com-
putational efficiency, the two symbolic/numeric implementations
discussed in Section 3.3 and the natural orthogonal complement

approach of Ma and Angeles (1989) are also used to generate an
inverse dynamic solution. We could not use the results of Wang
(1997) to validate our results, because we were unable to clearly
identify the geometric parameters, reference frames, and initial
configuration of the manipulator. However, the four different ap-
proaches that we have used all result in identical solutions for the
actuator torques.

Table 4 gives an overview of the approaches used and the
respective CPU time for one inverse dynamic analysis.

Approach CPU [ms]

1 - implicit symbolic 60
2 - symbolic/numeric (dummy J) 66
3 - symbolic/numeric (dummy ��1qd ) 107
4 - natural orthogonal complement 87

Table 4: Computational efficiency: CPU time for one inverse
dynamic analysis (Pentium II, 333 MHz)

From Table 4 it can be seen that DynaFlex approaches 1
and 2 require almost the same CPU time. However, the purely
symbolic approach (version 1) has the advantage of giving an
explicit solution. Thus no matrix manipulation capabilities (e.g.
LU-decomposition) are required, which might be advantageous
when the inverse dynamic analysis has to be stored on a mi-
crochip. As for the Gough-Stewart platform, one has to take into
account that the explicit expression for J will be larger than the
expressions for ���qi and ���qd and therefore, the memory sav-
ings by not implementing the matrix manipulation capabilities
will be partly offset by larger code for J. For applications to the
control of manipulators, it is interesting to note that the driving
torques can be calculated about 16 times in one second using
Matlab and a Pentium II (333 MHz). It would be interesting to
investigate how these numbers would change if the routines were
implemented in C on a microprocessor.

The natural orthogonal complement approach from Ma and
Angeles (1989) was implemented to check the validity of our re-
sults for the actuator torques. Although our numeric implemen-
tation may not be the most efficient, it is clear that our automated
symbolic approach is at least as efficient as the hand-derived
model from the natural orthogonal complement approach.

6 Conclusions

Several approaches have been presented for automatically gen-
erating inverse dynamic solutions for planar and spatial parallel
manipulators with full or reduced mobility. The automatic gener-
ation of driving loads eliminates the errors and tedium of manual
derivations.

The kinematic and dynamic equations are formulated us-
ing a combination of linear graph theory, the principle of vir-
tual work, and symbolic programming. Equations are formu-
lated in joint coordinates for systems of rigid and flexible bod-
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ies with open and closed kinematic chains. By selecting actu-
ated joint coordinates as independent in an embedding formu-
lation that eliminates non-working reaction loads from the dy-
namic equations, explicit expressions for driving loads are ob-
tained. This direct approach will fail when the number of loop
closure equations is large; we have presented alternative sym-
bolic and symbolic/numeric approaches that exploit the special
topology of parallel manipulators (with full or reduced mobility)
to generate inverse dynamic solutions.

For a planar 3-DOF manipulator, the symbolic approaches
out-performed the combined symbolic/numeric approaches in
terms of computational efficiency. For the spatial 4-DOF ma-
nipulator, the symbolic approach is only slightly faster than the
symbolic/numeric approach. However, for the spatial Gough-
Stewart platform, a symbolic/numeric approach was the fastest
at computing driving loads, especially when sparse matrix meth-
ods were employed. The latter may not be suitable for imple-
mentation on a microprocessor being used for real-time control.
Considering that the implicit symbolical approach can generate
the 6 driving loads at a rate of nearly 4 Hz in Matlab, it is likely
that this automated approach would be more than adequate for
a real-time control application if the symbolic expressions were
exported in optimized C code, compiled, and downloaded onto a
microprocessor.
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